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A B S T R A C T

We propose a spatial model of city coupling a labour market, a residential market, and air pollution resulting
from commuter traffic. The city can be of any shape. Agents choose where to work and live in order to
maximize their utility, by consuming goods, residential surface and by valuing air quality. Pollution dispersion
is described by an advection–diffusion equation. We prove existence of equilibria, and uniqueness when the
number of job locations is finite. We obtain analytical and numerical results emphasizing the combined role
of economic and meteorological factors on urban air quality.
. Introduction

Urban air pollution is a complex and multifaceted problem that
equires a comprehensive and interdisciplinary approach to understand
nd address. Atmospheric dispersion models are powerful tools that are
idely used to simulate and predict the dispersion and concentration
f pollutants in the air. However, these models alone are not able
o capture the human activities that drive pollution emissions. On
he other hand, urban economic models can provide valuable insights
nto the economic activities and land use patterns that contribute to
ollution.

The connection between these two complementary approaches is
oteworthy, yet still very unexplored. The urban economics theoretical
iterature that has so far focused on endogenous air pollution (for
xample, Arnott et al. (2008), Schindler et al. (2017), Regnier and
egras (2018), Kyriakopoulou and Picard (2021)) has largely ignored
he phenomenon of atmospheric dispersion. Furthermore, it has relied
n stylized spatial settings, often assuming the city is linear and mono-
entric. According to Wegener (2019), ‘‘Today only few urban models
re linked to environmental models to show the impact of planning policies
n greenhouse gas emissions, air quality, traffic noise and open space. [...]
ven fewer models are able to model the reverse relationship, the impact of
nvironmental quality, such as air quality or traffic noise, on location’’.

In this paper, we propose a unifying framework, based on a model
eveloped in Achdou et al. (2023) and, more extensively, in Petit
2022). We consider a closed, plane city of any shape, in which there is
continuum of workers and firms. First, individuals can freely choose
here they live and work. They aim at maximizing their utility, by con-

uming goods, housing surface and by valuing air quality. Second, firms
re distributed continuously throughout the city, allowing to model one

∗ Corresponding author.
E-mail addresses: mohamed.bahlali@chaireeconomieduclimat.org (M. Bahlali), quentin.petit@edf.fr (Q. Petit).

or several business districts, located anywhere. Third, pollution arises
from residential heating, output production and car commuting. Its dis-
persion is described through an advection–diffusion equation, allowing
to account for meteorological effects such as diffusion, transport by
wind and lessivage by rain. The source term of this equation depends on
where people live and work, and makes the coupling with the housing
and labour markets.

As our main result, we prove existence of equilibria, and uniqueness
when the number of workplaces is finite. We propose a numerical
method for computing solutions.

We then examine the impact of pollution aversion and wind on
the equilibrium. Regarding the effect of pollution aversion, we first
demonstrate that when the agents are indifferent to pollution, the
equilibrium is a Pareto one. Conversely, when they are sensitive to
pollution, the equilibrium becomes inefficient, as the agents do not
internalize the effects of air pollution into their location decisions.
Numerical simulations show that the more residents are sensitive to
pollution, the more they tend to concentrate in suburban regions,
contributing to increase commuting emissions.

Regarding the role of wind, we show that the level of pollution
experienced by residents is determined by both economic and mete-
orological factors, specifically the relative direction of wind and the
revenue gradient. If the wind and revenue gradient are oriented in
the same direction, pollution is carried to high-revenue areas, where
residents concentrate, resulting in an increase in experienced pollution
levels. The reverse conclusion holds if they are oriented in opposite
directions.

Our model is quite robust. We make standard assumptions on
agents’ utility function, commuting cost and firms’ demand for labour.
vailable online 13 January 2024
304-4068/© 2024 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.jmateco.2024.102943
eceived 6 April 2023; Received in revised form 18 December 2023; Accepted 20
 December 2023

https://www.elsevier.com/locate/jmateco
https://www.elsevier.com/locate/jmateco
mailto:mohamed.bahlali@chaireeconomieduclimat.org
mailto:quentin.petit@edf.fr
https://doi.org/10.1016/j.jmateco.2024.102943
https://doi.org/10.1016/j.jmateco.2024.102943
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2024.102943&domain=pdf


Journal of Mathematical Economics 111 (2024) 102943M. Bahlali and Q. Petit

n

a
f

𝑈

w
a
t
s
a
F
a
r

(

𝐶

a

𝑆

a

f

A

A
w
p

We account for the main sources of pollution, namely heating, trans-
portation, and output production. Furthermore, our work extends be-
yond that of Achdou et al. (2023), as we address a continuous distribu-
tion of workplaces, in contrast to their model with a discrete number of
workplaces. This advance is a step towards an extension of the model
to the case where the distribution of companies is endogenous, with
firms and residents both competing on the rental property market.

This work relates to a recent strand in the literature that explores
the role of spatial externalities resulting from pollution dispersion. Ca-
macho and Pérez-Barahona (2015) examine a problem of optimal con-
sumption and land use in a spatio-temporal setting with pollution
diffusion. Focusing on optimal taxation, La Torre et al. (2021) demon-
strate that ignoring pollution diffusion can lead to suboptimal policies.
Another notable contribution is the work of Boucekkine et al. (2021),
who study the problem of optimal productive investment and depol-
lution with transboundary pollution, and extend their findings in a
differential game setting in Boucekkine et al. (2022). They use an
infinite-dimensional formulation of their optimal control problems to
obtain closed-form solutions. Our paper makes three contributions.
Firstly, it explores this topic in the field of urban economics, which has
not been studied before to the best of our knowledge. Secondly, our
model represents a city in two dimensions, while previous models only
consider a one-dimensional spatial economy – although their results
could be generalized to higher dimensions. Thirdly, our model takes
into account advection and diffusion, while previous models (with
the exception of Boucekkine et al. (2022)) only consider diffusion in
describing the dispersion process.

Some questions remain open. Proving uniqueness in the general case
is a difficult exercise and is left for future research. Economically, we
ignore the positive externality effect of production (the concentration of
employment at a given place increases firms’ productivity), which is yet
central to the very existence of cities ( (Fujita and Ogawa, 1982), Lucas
and Rossi-Hansberg (2002)). Furthermore, it would be interesting to
expand the model within a dynamic framework; for instance, by in-
corporating innovation dynamics, accumulation or capital diffusion, or
by considering migration frictions. Finally, our description of pollution
dispersion can still be improved: for example, we ignore turbulent
effects, which have yet an important role in the dispersion process in
urban areas, characterized by complex geometries (Bahlali et al., 2019).

As an opening remark, we would like to point out the long-term
socioeconomic consequences of pollution advection by wind. For ex-
ample, it is known that westerly winds in the 19th century contributed
to making eastern neighbourhoods of Western European capitals more
polluted and deprived than their western counterparts. In some cities,
such as Paris or London, this spatial inequality has persisted to our
time. Heblich et al. (2021) show that pollution from historical factories
in these cities was responsible for 15% of the variation in neighbour-
hood composition in 1881. Besides, even though these factories have
since closed, they show that this past pollution still accounts for up
to 20% of the current observed neighbourhood segregation. A possible
extension of our model would be to account for heterogeneous agents,
in order to capture this spatial inequality. The recent theoretical ad-
vances in heterogeneous households models with the use of mean-field
games (Achdou et al., 2021) offer an promising avenue for exploration.

The paper is organized as follows. We describe the model in Sec-
tion 2, and explore a simple case in Section 3. We prove existence of
equilibria in Section 4, and uniqueness in Section 5. Section 6 presents
some analytical properties of the model. Section 7 is dedicated to the
numerical aspects. Section 8 concludes and indicates directions for
future research.

Notations. Throughout the paper, the measure of a bounded, Lebesgue-
measurable set 𝐸 of R𝑑 is denoted by |𝐸|, its closure by 𝐸, and its
boundary by 𝜕𝐸. The cardinality of a finite set 𝐴 is denoted by #𝐴. The
2

otation a.e. will stand for almost everywhere.
2. Model

We represent the city as an open, convex and bounded subset
𝛺 of R2, of Lebesgue measure 1, with smooth boundary. There is
a continuum of rational resident-workers (or agents). They supply
labour and receive wages from competitive firms that produce a unique
numéraire good that is both consumed within the city and sold to the
larger economy at the same normalized price. Firms are assumed to
be immobile and are exogenously concentrated across the city. On the
opposite, agents can freely choose where they work and live. They
initially select their residential location, followed by their workplace,
and finally determine the surface of their accommodation and their
consumption level.

2.1. Agents utility and revenue

Consider an individual agent residing at 𝑥 ∈ 𝛺 and working at
𝑦 ∈ 𝛺. Given a revenue 𝑅(𝑥, 𝑦), a rental price by surface unit 𝑄(𝑥) and

pollution level 𝐸̃(𝑥) at their residential location, the indirect utility
unction of this agent is assumed to be

𝜃,𝛾
(

𝑅(𝑥, 𝑦), 𝑄(𝑥), 𝐸̃(𝑥)
)

= sup
𝐶,𝑆

{𝐶𝜃𝑆1−𝜃𝐸̃(𝑥)−𝛾 , 𝐶 +𝑄(𝑥)𝑆

≤ 𝑅(𝑥, 𝑦), 𝐶 ≥ 0, 𝑆 ≥ 0},

here 𝜃 ∈ [0, 1] is the preference for consumption, 𝛾 ∈ [0,+∞) is the
version to pollution exposure, 𝐶 denotes the level of consumption of
he agent, and 𝑆 the surface of the residence. This utility function is
tandard and can be found, for example, in Schindler et al. (2017)
nd Borck (2019). Several empirical studies (Smith and Huang, 1993;
ontenla et al., 2019) have shown that individuals take into consider-
tion the issue of air pollution when making decisions regarding their
esidential location.

Applying the first-order conditions gives, for any (𝑅(𝑥, 𝑦), 𝑄(𝑥)) ∈
0,+∞)2, the optimal consumption and demand for surface, as

𝜃(𝑅(𝑥, 𝑦)) = 𝜃𝑅(𝑥, 𝑦)

nd

𝜃(𝑅(𝑥, 𝑦), 𝑄(𝑥)) = (1 − 𝜃)
𝑅(𝑥, 𝑦)
𝑄(𝑥)

. (1)

For any (𝑅(𝑥, 𝑦), 𝑄(𝑥), 𝐸̃(𝑥)) ∈ (0,+∞)3, the utility of an agent is
therefore given by

𝑈𝜃,𝛾
(

𝑅(𝑥, 𝑦), 𝑄(𝑥), 𝐸̃(𝑥)
)

= 𝜃𝜃(1 − 𝜃)1−𝜃
𝑅(𝑥, 𝑦)

𝑄(𝑥)1−𝜃𝐸̃(𝑥)𝛾
. (2)

Agents choose where to work and live in order to maximize their
utility, i.e. solve

sup
𝑥,𝑦∈𝛺

𝑈𝜃,𝛾
(

𝑅(𝑥, 𝑦), 𝑄(𝑥), 𝐸̃(𝑥)
)

. (3)

According to Eq. (2), the selection of a workplace affects the utility
only through the revenue. Thus, an agent will choose the workplace
that maximizes his revenue. Given a wage map 𝑤 ∈ 𝐶(𝛺,R∗

+), agents
t the position 𝑥 ∈ 𝛺 and working at 𝑦 ∈ 𝛺 receive the income
𝑤(𝑦) − 𝑐(𝑥, 𝑦). The map 𝑐 ∈ 𝐶(𝛺2,R+) represents the commuting cost
rom 𝑥 to 𝑦.

ssumption 2.1. The function 𝑐 ∶ 𝛺
2

→ R+ is continuous and
𝑐(𝑧, 𝑧) = 0 for every 𝑧 ∈ 𝛺.

Therefore, in the absence of any friction, given a wage map 𝑤 ∈
𝐶(𝛺,R∗

+), the revenue of an agent residing at 𝑥 ∈ 𝛺 is

𝑅(𝑥,𝑤) = max
𝑦∈𝛺

[𝑤(𝑦) − 𝑐(𝑥, 𝑦)].

In line with spatial economics theoretical literature (Anas, 1990;
lvarez and Lucas, 2007; Allen et al., 2020; Achdou et al., 2023),
e incorporate frictions into the model by considering idiosyncratic
references related to job locations. Let (𝜀(𝑥))𝑥∈𝛺 be a collection of iid

standard centred Gumbel random variables. Let us consider:



Journal of Mathematical Economics 111 (2024) 102943M. Bahlali and Q. Petit

f
l

a
c

P

f

w

𝑛

E

∫

B
l

w

𝓁

+

w

𝐿

T

I
d

f

A

• (𝑃 𝑛)𝑛∈N∗ a sequence of partitions of 𝛺 such that #𝑃 𝑛 = 𝑛. 𝑃 𝑛 can
be seen as a partition into 𝑛 districts of the city 𝛺. We denote
by 𝑃 𝑛𝑘 the 𝑘th element (district) of 𝑃 𝑛. It is assumed that every
element 𝑃 𝑛𝑘 is a connected set.

• for every 𝑛 ∈ N∗ and 𝑘 ∈ {1,… , 𝑛} 𝑝𝑛𝑘 the Lebesgue measure of
𝑃 𝑛𝑘 . We choose (𝑃 𝑛)𝑛∈N such that ‖𝑝𝑛‖∞ ≤ 2|𝛺|∕𝑛.

• for every 𝑛 ∈ N∗ and 𝑘 ∈ {1,… , 𝑛}, 𝑦𝑛𝑘 an element of 𝑃 𝑛𝑘 .

Fix 𝑛 ∈ N∗. Let us first assume that the agents can choose to work
rom among the 𝑛 workplaces 𝑦𝑛1,… , 𝑦𝑛𝑘, and that their preference for
ocation 𝑘 is given by the random variable 𝜉𝑛(𝑦𝑛𝑘) ∶= 𝜀(𝑦𝑛𝑘) − ln(𝑝𝑛𝑘).

1 In
this case, the expected revenue of an agent residing at 𝑥 ∈ 𝛺 writes

𝑅𝑛𝜎 (𝑥,𝑤) = E
{

𝑛
max
𝑘=1

[

𝑤(𝑦𝑛𝑘) − 𝑐(𝑥, 𝑦
𝑛
𝑘) + 𝜎𝜉

𝑛(𝑦𝑛𝑘)
]

}

,

where 𝜎 > 0 controls the dispersion of idiosyncratic preferences.
We can show (Achdou et al., 2023) that for every 𝑛 ∈ N∗,

𝑅𝑛𝜎 (𝑥,𝑤) = 𝜎 ln

( 𝑛
∑

𝑘=1
𝑝𝑛𝑘𝑒

𝑤(𝑦𝑛𝑘 )−𝑐(𝑥,𝑦
𝑛
𝑘 )

𝜎

)

(4)

nd, for any 𝑖 ∈ {1,… , 𝑛}, the probability for the workplace 𝑦𝑛𝑖 to be
hosen by an agent living at 𝑥 ∈ 𝛺 is
(

𝑤(𝑦𝑛𝑖 ) − 𝑐(𝑥, 𝑦
𝑛
𝑖 ) + 𝜎𝜉

𝑛(𝑦𝑛𝑖 ) > 𝑤(𝑦
𝑛
𝑘) − 𝑐(𝑥, 𝑦

𝑛
𝑘) + 𝜎𝜉

𝑛(𝑦𝑛𝑘), ∀𝑘 ≠ 𝑖
)

=
𝑝𝑛𝑖 𝑒

𝑤(𝑦𝑛𝑖 )−𝑐(𝑥,𝑦
𝑛
𝑖 )

𝜎

∑𝑛
𝑘=1 𝑝

𝑛
𝑘𝑒

𝑤(𝑦𝑛𝑘 )−𝑐(𝑥,𝑦
𝑛
𝑘 )

𝜎

(5)

Let 𝑌 𝑛(𝑥) be the random variable over {𝑦𝑛1,… , 𝑦𝑛𝑛} representing the
workplace location of an agent residing at 𝑥 ∈ 𝛺. The variable 𝑌 𝑛(𝑥)
ollows the probability distribution (5).

In the continuous case, as the number of workplaces becomes large,
e have in the limit

lim
→+∞

𝑅𝑛𝜎 (𝑥,𝑤) = 𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

and, for any continuous bounded function 𝑔 defined on 𝛺 and taking
values in R,

lim
𝑛→+∞

E
[

𝑔 (𝑌 𝑛)
]

= ∫𝛺
𝑔(𝑦)𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝑦

where

𝐺𝜎 (𝑥, 𝑦,𝑤) =
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎

∫𝛺 𝑒
𝑤(𝑧)−𝑐(𝑥,𝑧)

𝜎 𝑑𝑧
. (6)

This means that the sequence (𝑌 𝑛(𝑥))𝑛≥1 converges in distribution to a
continuous random variable with density 𝐺𝜎 (𝑥, ⋅, 𝑤).

Thus, in the continuous case, for any 𝑥 ∈ 𝛺,

𝑅𝜎 (𝑥,𝑤) = 𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

(7)

can be seen as the expected revenue of an agent residing at 𝑥, and
𝐺𝜎 (𝑥, 𝑦,𝑤) as the probability density for an agent located at 𝑥 to choose
the workplace 𝑦 ∈ 𝛺. In Appendix, we show that 𝑅𝜎 (𝑥,𝑤) converges to
𝑅(𝑥,𝑤) when 𝜎 goes to 0.

In the end, an individual agent chooses his residential location in
order to solve

sup
𝑥∈𝛺

𝑈𝜃,𝛾
(

𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸̃(𝑥)
)

. (8)

1 The correcting term − ln(𝑝𝑛𝑘) ensures that in the absence of income,
{

max𝑛
[

𝜉𝑛(𝑦𝑛 )
]}

= 0.
3

𝑘=1 𝑘 𝜙
2.2. Labour market

Let 𝑐 (𝛺) be the set of probability measures on 𝛺 that admit a
continuous density with respect to the Lebesgue measure. For any dis-
tribution of residents 𝜇 ∈ 𝑐 (𝛺) and any wage function 𝑤 ∈ 𝐶(𝛺,R∗

+),
the density of labour supply in 𝑦 ∈ 𝛺 is given by

𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝜇(𝑥).

y the law of total probability, this is simply the integral, over all the
iving places 𝑥 ∈ 𝛺, of the density of residents at 𝑥, multiplied by the

probability density for an agent to work at 𝑦 knowing that they reside
at 𝑥.

On the demand side, let 𝐹 ∶ R+ → R be a production function
satisfying the usual Inada conditions.

Assumption 2.2 (Inada Conditions). The function 𝐹 ∶ R+ → R satisfies
𝐹 (0) = 0, 𝐹 is strictly concave on R+, lim

𝑥→∞
𝐹 ′(𝑥) = 0 and lim

𝑥→0
𝐹 ′(𝑥) =

+∞.

Define the profit of a firm as

𝜋(𝑣) ∶= sup
𝑙≥0

{𝐹 (𝑙) − 𝑙𝑣} , (9)

here 𝑙 represents the quantity of labour and 𝑣 the wage.
The labour demand of an individual firm is

(𝑣) = 𝐹 ′−1(𝑣) = −𝜋′(𝑣).

We see that 𝓁 is differentiable, decreasing and such that lim
𝑣→0+

𝓁(𝑣) =
∞ and lim

𝑣→+∞
𝓁(𝑣) = 0.

Let 𝜈 ∶ 𝛺 → R be the spatial concentration of firms.
Then, the aggregate labour demand at a certain location 𝑦 ∈ 𝛺,

here the wage is 𝑣 > 0, is given by

(𝑦, 𝑣) = 𝜈(𝑦)𝓁(𝑣).

he labour market clearing condition thus writes as follows:

∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝜇(𝑥) = 𝐿(𝑦,𝑤(𝑦)), ∀𝑦 ∈ 𝛺. (10)

2.3. Housing market

Now, for any distribution of residents 𝜇 ∈ 𝑐 (𝛺), any wage function
𝑤 ∈ 𝐶(𝛺,R∗

+) and any rental price function 𝑄 ∈ 𝐶(𝛺,R+), the
aggregate demand for surface is given, for all 𝑥 ∈ 𝛺, by

𝑆𝜃(𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥))𝜇(𝑥).

t is the individual demand for surface, given by (1), multiplied by the
ensity of residents at 𝑥.

We assume that the housing supply is exogenous and given by a
unction 𝜓 satisfying the following assumption.2

ssumption 2.3. The housing supply 𝜓 ∶ 𝛺 → R+ is continuous and
takes positive values.

The housing market clearing condition then writes as follows:

𝑆𝜃(𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥))𝜇(𝑥) = 𝜓(𝑥), ∀𝑥 ∈ 𝛺. (11)

2 The results of this paper still hold if we consider an isoelastic supply
(𝑄) = 𝑄𝜌 with 𝜌 > 0.
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2.4. Pollution dispersion

We assume that the pollution concentration 𝐸̃(𝑧) at 𝑧 ∈ 𝛺 can be
ecomposed into two terms: a background regional level 𝐸0 > 0 and a
ocal level 𝐸(𝑧), such that 𝐸̃(𝑧) = 𝐸0 + 𝐸(𝑧).3

The dispersion of local pollution involves several physical and
hemical processes, the main ones being:

• Advection, which refers to the transport of pollution by wind;
• Molecular diffusion, which reflects that pollution naturally spreads

from high concentration to low concentration areas;
• Chemical interactions between the emitted pollutants and chemical

species in the air;
• Lessivage, which is the process of natural air purification (for

example, by rain).

If we neglect the chemical interactions, the stationary distribution
f 𝐸 solves the following scalar transport equation (Sportisse, 2009):

𝐕(𝑧) ⋅ ∇𝐸(𝑧)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= ∇ ⋅ (𝑘∇𝐸(𝑧))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝑓 (𝑧)
⏟⏟⏟
𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

− 𝜆𝐸(𝑧)
⏟⏟⏟
𝑙𝑒𝑠𝑠𝑖𝑣𝑎𝑔𝑒

, ∀𝑧 ∈ 𝛺, (12)

where 𝐕(𝑧) ∈ R2 is the wind field at 𝑧 ∈ 𝛺, 𝑘 ∈ (0,+∞) the diffusion
coefficient, and 𝜆 ∈ (0,+∞) the lessivage coefficient. The wind field 𝐕
atisfies an incompressibility condition: for all 𝑧 ∈ 𝛺, ∇ ⋅ 𝐕(𝑧) = 0.
e consider an elliptic equation rather than a time-dependent one4

ecause the characteristic timescale of pollution dispersion is much
horter compared to the characteristic timescale of economic decisions.
ypically, the timescales involved in urban-scale pollutant dispersion
ange from several hours to a few days at most (Lucas, 1958), while
he timescales associated with economic decisions (such as choosing a
esidence or workplace) are typically on the order of years.

We assume, without loss of generality, that 𝑘 = 1. The dispersion
quation then becomes:

𝐸(𝑧) − 𝐕(𝑧) ⋅ ∇𝐸(𝑧) − 𝜆𝐸(𝑧) + 𝑓 (𝑧) = 0.

The only thing left is to clarify the source term 𝑓 (𝑧). We consider
three sources of emissions: residential heating, output production and
car commuting. The pollution resulting from residential heating is
assumed to be proportional to the housing supply 𝜓(𝑧). The pollution
resulting from the production of the output is assumed to be propor-
tional to 𝐹 (𝓁(𝑤(𝑧))). Finally, we assume that the commuting path is a
straight line from home to work. The road network is very dense and
can be viewed as a continuum. It has a certain width 𝛿 > 0. For any
𝑧 ∈ 𝛺, we denote by 𝜙𝜇,𝑤 the flux of individuals commuting by the
element of road at 𝑧. This is the sum of all the agents passing through
𝑧. In other words, it is the sum over all workplaces and residential
locations of the probability that agents will cross 𝑧 by following their
path to work, i.e.

𝜙𝜇,𝑤(𝑧) = ∫𝛺2 𝛿
−1𝟏𝑧∈𝛴𝛿 (𝑥,𝑦)𝜇(𝑥)𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝑥𝑑𝑦, (13)

where 𝛴𝛿(𝑥, 𝑦) ∶= {𝑠 ∈ 𝛺, ∃𝑡 ∈ [𝑥; 𝑦], |𝑡 − 𝑠| ≤ 𝛿} is the surface of
the rectangle of length |𝑥− 𝑦|, of width 𝛿, centred around the segment
[𝑥; 𝑦]. The source term thus writes, for all 𝑧 ∈ 𝛺

𝑓𝜇,𝑤(𝑧) = 𝛼1𝜓(𝑧) + 𝛼2𝜈(𝑧)𝐹 (𝓁(𝑤(𝑧))) + 𝛼3𝜙𝜇,𝑤(𝑧), (14)

3 Background pollution originates at a larger scale and is independent from
ocal emissions (Tchepel et al., 2010).

4 In a temporal setting, the evolution equation satisfied by 𝐸(𝑧, 𝑡) would
rite:

𝑡𝐸(𝑧, 𝑡) + 𝐕(𝑧, 𝑡) ⋅ ∇𝐸(𝑧, 𝑡) = ∇ ⋅ (𝑘∇𝐸(𝑧, 𝑡))

+ 𝜒(𝐸(𝑧, 𝑡); 𝑧) + 𝑓 (𝑧, 𝑡) − 𝜆𝐸(𝑧, 𝑡), ∀𝑧 ∈ 𝛺.
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. (
where (𝛼1, 𝛼2, 𝛼3) ∈ [0,+∞)3. The previous equation then writes:

𝛥𝐸(𝑧) − 𝐕(𝑧) ⋅ ∇𝐸(𝑧) − 𝜆𝐸(𝑧) + 𝑓𝜇,𝑤(𝑧) = 0.

The value of local pollution at the boundary is supposed to be zero:
he borders of the city correspond to rural areas with little pollution.
hus, for all 𝑠 ∈ 𝜕𝛺, 𝐸(𝑠) = 0.

The equation for local pollution dispersion finally takes the follow-
ing form
{

𝛥𝐸(𝑧) − 𝐕(𝑧) ⋅ ∇𝐸(𝑧) − 𝜆𝐸(𝑧) + 𝑓𝜇,𝑤(𝑧) = 0, ∀𝑧 ∈ 𝛺,
𝐸(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺.

(15)

We will consider weak solutions to Eq. (15), as defined in the
ollowing. We denote by 𝐻1

0 (𝛺) the first order Sobolev space on 𝛺 with
ero boundary value.

efinition 2.1. We say that 𝑢 ∈ 𝐻1
0 (𝛺) is a weak solution to (15) if

or all 𝑣 ∈ 𝐻1
0 (𝛺),

𝛺
∇𝑢 ⋅ ∇𝑣 + ∫𝛺

(𝐕 ⋅ ∇𝑢) 𝑣 + 𝜆∫𝛺
𝑢𝑣 = ∫𝛺

𝑓𝜇,𝑤𝑣.

.5. Equilibrium

We define an equilibrium as follows.

efinition 2.2. We say that (𝑤,𝑄,𝐸, 𝜇) ∈ 𝐶(𝛺,R∗
+)

2 ×
(

𝐻1
0 (𝛺) ∩

(𝛺,R∗
+)
)

× 𝑐 (𝛺) is an equilibrium if

∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝜇(𝑥) = 𝐿(𝑦,𝑤(𝑦)), ∀𝑦 ∈ 𝛺, (16)

𝑆𝜃(𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥))𝜇(𝑥) = 𝜓(𝑥), ∀𝑥 ∈ 𝛺, (17)

− 𝛥𝐸(𝑧) + 𝐕(𝑧) ⋅ ∇𝐸(𝑧) + 𝜆𝐸(𝑧) = 𝑓𝜇,𝑤(𝑧), ∀𝑧 ∈ 𝛺, (18)
supp𝜇 ⊂ argmax

𝑥∈𝛺
𝑈𝜃,𝛾 (𝑅𝜎(𝑥,𝑤), 𝑄(𝑥), 𝐸(𝑥)),

(19)

here (18) is completed with the Dirichlet condition 𝐸 = 0 on 𝜕𝛺.

In Definition 2.2, Eq. (16) reflects the equilibrium in the labour
arket, (17) the one in the housing market, (18) the dispersion of
ollution, and (19) is a mobility condition: residents choose to lo-
ate at places that maximize their utility. This condition implies that
t the equilibrium, all the agents get the same utility level. It can
lso be seen as a Nash equilibrium condition. Indeed, if 𝛺 ∋ 𝑥 ↦
𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸̃(𝑥)) is continuous, then (19) is equivalent to

∫𝛺
𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸̃(𝑥))𝑑𝜇(𝑥)

= sup
𝜈∈𝑐 (𝛺) ∫𝛺

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸̃(𝑥))𝑑𝜈(𝑥), (20)

hich is a mean-field equation characterizing a Nash equilibrium with
continuum of players.

. An explicit solution in a simple case

We first apply our model to a simple case: the linear monocentric
ity. We neglect the effects of diffusion and wind. These approximations
llow us to obtain, in this one dimensional case, an explicit formulation
f the equilibrium.

Let us consider the segment [0, 1] as our linear city. There is only
ne working place, located in 1. The wage function then reduces to one
ingle value, 𝑤∗, which is solution to a simple labour equation

(𝑤∗) = 1 (21)

The revenue of an agent located in 𝑥 ∈ [0, 1] is 𝑅(𝑥,𝑤∗) = 𝑤∗ − 𝑐(𝑥).
he housing equation writes, for all 𝑥 ∈ [0, 1]

1 − 𝜃)𝑅(𝑥,𝑤∗)𝜇(𝑥) = 𝑄(𝑥) (22)
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Fig. 1. Equilibrium in the 1D monocentric city, for different values of 𝛾.
Because we ignore diffusion and advection, we have, for all 𝑥 ∈ [0, 1]

𝜆𝐸̃(𝑥) = 𝜆𝐸0 + 𝑓𝜇(𝑥).

The source term 𝑓𝜇(𝑥) is the density of people commuting by 𝑥. As all
the agents work in 1, we have

𝑓𝜇(𝑥) = ∫

𝑥

0
𝜇(𝑠) 𝑑𝑠

and the pollution equation becomes

𝐸̃(𝑥) = 𝐸0 + 𝜆−1 ∫

𝑥

0
𝜇(𝑠) 𝑑𝑠 (23)

Finally, the mobility condition writes

supp𝜇 ⊂ argmax
𝑥∈[0,1]

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸(𝑥)) (24)

Any solution (𝑤∗, 𝑄, 𝐸, 𝜇) ∈ R∗
+ × 𝐶([0, 1],R∗

+) × 𝐶1([0, 1],R∗
+) ×

𝑐 ([0, 1]) to the system given by (21), (22), (23) and (24) is an equi-
librium of our problem.

The following Proposition gives existence and uniqueness of the
equilibrium. In addition, it says that pollution increases with agents’
aversion to pollution.

Proposition 3.1. Assume that the function 𝑐 is continuous, decreasing,
𝑐(1) = 0 and 𝑐(0) < 𝐿−1(1). The system formed by (21), (22), (23) and
(24) admits a unique equilibrium, where the pollution is explicitly given by

𝐸̃(𝑥) =
⎡

⎢

⎢

⎣

𝐸
1+𝛾−𝜃
1−𝜃

0 +
(

(

𝐸0 + 𝜆−1
)

1+𝛾−𝜃
1−𝜃 − 𝐸

1+𝛾−𝜃
1−𝜃

0

) ∫ 𝑥0 𝑅(𝑠,𝑤∗)
𝜃

1−𝜃 𝑑𝑠

∫ 1
0 𝑅(𝑠,𝑤∗)

𝜃
1−𝜃 𝑑𝑠

⎤

⎥

⎥

⎦

1−𝜃
1+𝛾−𝜃

,

∀𝑥 ∈ [0, 1] (25)

There exists 𝜆0 > 0 such that for all 𝜆 < 𝜆0, 𝑑𝐸̃(𝑥)∕𝑑𝛾 > 0 for all 𝑥 ∈ [0, 1].
In other words, at the equilibrium, pollution increases with the aversion of
the population to pollution, 𝛾.

The intuition behind Proposition 3.1 is simple. The more individuals
are pollution averse, the more they tend to move away from it by living
far from the city centre. But, in doing so, they increase their commuting
distance, thus the amount of pollution they release.

To illustrate this effect, we compute the equilibrium in pollution,
residence, and rental price, for several values of 𝛾, ranging from 0 to 1.
We choose 𝐿 such that 𝑤∗ = 𝐿−1(1) = 1. We assume a linear commuting
cost function, i.e. 𝑐(𝑥) = 𝑐0(1−𝑥), with 𝑐0 = 0.3, and set other parameters
as follows: 𝜃 = 0.75, 𝜆 = 1.0, 𝐸0 = 1.0. Fig. 1 displays the numerical
results. As 𝛾 increases, agents tends to concentrate in 0, away from the
city centre in 1, raising in turn the total amount of pollutants released.

We already observe, through this simple example, that the parame-
ter 𝛾 is an important factor in the model. In Section 6.1, we demonstrate
that when it is equal to zero, the resulting equilibrium is a Pareto one.
In Section 7.4.1, we provide additional numerical examples illustrating
that as 𝛾 increases, it can motivate agents to reside far from polluted
5

areas, resulting in longer commuting distances. Thus, the parameter
𝛾 has a dual impact on utility: (1) by making agents sensitive to the
pollution externality and (2) by influencing residential location choices,
consequently affecting pollution at the equilibrium.

4. Existence in the general case

In this section, we aim to prove existence of equilibria in the general
case, as described in Section 2. We assume that Assumption 2.1, 2.2 and
2.3 are in force. We assume furthermore that the transportation cost 𝑐
is of class 𝐶1 on 𝛺2, and that the spatial concentration of firms 𝜈 is
differentiable, and satisfies 1∕𝜂 ≤ 𝜈 ≤ 𝜂, for some positive 𝜂.

The following theorem is the main result of the paper.

Theorem 4.1. There exists at least one equilibrium, in the sense of
Definition 2.2.

The proof, presented in the subsequent part of this section, is
inspired by Achdou et al. (2023). It relies on a fixed-point argument: we
build a continuous map  such that the fixed-points of  are exactly
the solutions of the equilibrium problem. To that end, we first show
that the distribution of residents, 𝜇, can be explicitly obtained from the
wage function 𝑤 and the pollution 𝐸̃. We then show that the solutions
𝑤 and 𝐸̃ belong to convex and compact subsets of, respectively, 𝐶(𝛺,R)
and 𝐿2(𝛺). We then apply Schauder fixed point theorem:

Theorem (Schauder Fixed Point Theorem). Let 𝐹 be a normed vector space,
𝐾 a convex and compact subset of 𝐹 and  a continuous application from
𝐾 into itself. Then  admits at least one fixed-point.

We start by showing that any equilibrium wage map belongs to a
convex and compact subset of 𝐶(𝛺,R). To that end, following Petit
(2022), we show that any solution to (16) can be expressed as the
unique solution to a convex minimization problem.

Proposition 4.1. For any distribution of agents 𝜇 ∈ 𝑐 (𝛺), (16) holds
for 𝑤 ∈ 𝐶(𝛺,R∗

+) if and only if 𝑤 is the unique minimizer of

min
𝑧∈𝐾1

{

∫𝛺
𝑅𝜎 (𝑥, 𝑧)𝑑𝜇(𝑥) + ∫𝛺

𝜈(𝑦)𝜋(𝑧(𝑦)) 𝑑𝑦
}

. (26)

where

𝐾1 ∶=
{

𝑧 ∈ 𝐶1(𝛺,R+), 𝑧(⋅) ≥ 𝓁−1(𝜂), ‖𝑧‖𝐿∞ ≤𝑀1, ‖∇𝑧‖𝐿∞ ≤𝑀2
}

and 𝑀1 and 𝑀2 are independent of 𝜇. Besides, 𝐾1 is convex and compact
in 𝐶(𝛺,R).

The outline of the proof is as follows. We first provide a priori
bounds on the solutions to (26) and their derivatives to reduce the
minimization problem to a compact and convex subset of 𝐶(𝛺,R). We
then apply the direct method in the calculus of variations to deduce the
existence of a unique solution.
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Remark. The variational problem (26) takes a labour demand per-
spective, as 𝓁(𝑤(𝑦)) represents the individual labour demand of a firm
at the equilibrium wage 𝑤(𝑦). The following Proposition formulates
an equivalent variational problem from a labour supply perspective,
which is essentially the dual of the first problem. The proof is given
in Appendix.

Proposition 4.2. For any 𝜇 ∈ 𝑐 (𝛺), if 𝑤 ∈ 𝐶(𝛺,R∗
+) solves (16), then

𝑤 solves

max
𝑤∈𝐾1

{

∫𝛺
𝑅𝜎 (𝑥,𝑤)𝑑𝜇(𝑥) + ∫𝛺

𝜈(𝑦)𝛱𝜇,𝑤(𝑦)𝑑𝑦
}

(27)

where, for all 𝑦 ∈ 𝛺 and 𝑤 ∈ 𝐶(𝛺,R∗
+),

𝛱𝜇,𝑤(𝑦) ∶= 𝐹
(

𝜈(𝑦)−1𝑙𝜇,𝑤(𝑦)
)

− 𝑙𝜇,𝑤(𝑦)𝑤(𝑦),

and

𝑙𝜇,𝑤(𝑦) ∶= ∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝜇(𝑥).

Thus, given the commuting probabilities 𝐺𝜎 (𝑥, 𝑦,𝑤), the clearing
wage maximizes the total surplus of firms and workers. This result
is economically not surprising, because the labour market is not af-
fected by the pollution externality and we assumed perfect competition
between firms.

Now, as usual in quantitative urban models (Diamond, 2016), we
make use of the housing market clearing condition and free mobility
of the agents to obtain an explicit formulation of the equilibrium
distribution of residents.

Lemma 4.1. Let (𝑤,𝑄,𝐸, 𝜇) ∈ 𝐶(𝛺,R∗
+)

2 ×𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+) × 𝑐 (𝛺)
be an equilibrium. Then,

𝜇(𝑥) =
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝜓(𝑦) 𝑑𝑦
, ∀𝑥 ∈ 𝛺. (28)

Eq. (28) displays an equilibrium relationship between the distribu-
ions of residents, wages and pollution: people tend to locate where
evenues are high and pollution is low. As a consequence, if (𝑤,𝑄,𝐸, 𝜇)

is an equilibrium, then the source term of the pollution equation, 𝑓𝜇,𝑤,
can be expressed as a function depending on 𝑤 and 𝐸, i.e. for all 𝑧 ∈ 𝛺

𝜇,𝑤(𝑧) = 𝑓𝑤,𝐸 (𝑧) ∶= 𝛼1𝜓(𝑧)

+ 𝛼2𝜈(𝑧)𝐹 (𝓁(𝑤(𝑧)))

+ 𝛼3 ∫𝛺2
𝛿−1𝟏𝑧∈𝛴(𝑥,𝑦)

𝑅𝜎 (𝑥,𝑤)
𝜃

1−𝜃 𝐸̃(𝑥)−
𝛾

1−𝜃

∫𝛺 𝑅𝜎 (𝑠,𝑤)
𝜃

1−𝜃 𝐸̃(𝑠)−
𝛾

1−𝜃 𝑑𝑠
𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝑥𝑑𝑦

Given this new formulation of the pollution source term, we finally
show that any equilibrium distribution of pollution belongs to a convex
and compact subset of 𝐿2(𝛺).

Proposition 4.3. Let (𝑤,𝐸) ∈ 𝐶(𝛺,R∗
+) ×𝐻

1
0 (𝛺) ∩𝐶(𝛺,R∗

+). The PDE
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝑤,𝐸 (𝑧), ∀𝑧 ∈ 𝛺,
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺,

(29)

admits a unique solution 𝑢𝑤,𝐸 ∈ 𝐻1
0 (𝛺). Moreover, 𝑢𝑤,𝐸 is positive and

belongs to

𝐾2 =
{

𝑢 ∈ 𝐻1
0 (𝛺), ‖∇𝑢‖𝐿2 ≤ |𝛺| 𝛿−2 min(1, 𝜆)−1

}

,

which is convex and compact in 𝐿2(𝛺).

The proof relies on applying Riesz’s representation theorem for the
existence and uniqueness part, Hölder inequality for the majoration of
the solution derivative, and Rellich’s theorem for the compactness of
𝐾2.

We shall now use a fixed-point argument to establish the existence
of an equilibrium. Proposition 4.4 builds a map  defined on 𝐾1 × 𝐾2
6

whose fixed-points are exactly the equilibria. e
Proposition 4.4. Let us define the function  ∶ 𝐾1 × 𝐾2 → 𝐾1 × 𝐾2 by
the following construction:

(1) To any (𝑤,𝐸) ∈ 𝐾1 ×𝐾2, we associate the probability 𝜇(𝑤,𝐸) on 𝛺
with density

𝛺 ∋ 𝑥↦
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝜓(𝑦) 𝑑𝑦
, (30)

with respect to the Lebesgue measure.
(2) We define 1(𝑤,𝐸) as the unique solution to (26) associated to

𝜇(𝑤,𝐸), i.e. 1(𝑤,𝐸) is the unique minimizer of

min
𝑧∈𝐾̊0

{

𝜙𝜇(𝑤,𝐸)(𝑧) − ∫𝛺 ∫

𝑧(𝑦)

𝜀
𝐿(𝑦, 𝑠)𝑑𝑠𝑑𝑦

}

.

(3) We define 2(𝑤,𝐸) as the unique solution to (29), i.e.
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝑤,𝐸 (𝑧), ∀𝑧 ∈ 𝛺,
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺.

he fixed points of  are exactly the equilibria, in the sense of Defini-
ion 2.2.

roof. First,  is well defined because the solutions to (26) and (29)
espectively belong to 𝐾1 and 𝐾2. Now, if (𝑤,𝐸) = (𝑤,𝐸), let us
onsider 𝜇 the probability measure given by (30), and the rental price
∶ 𝛺 → R∗

+ given by

𝑄(𝑥) = (1 − 𝜃)𝑅𝜎 (𝑥,𝑤)𝜇(𝑥), ∀𝑥 ∈ 𝛺

The quadruplet (𝑤,𝑄,𝐸, 𝜇) ∈ 𝐾1 × 𝐶(𝛺,R∗
+) × 𝐾2 × 𝑐 (𝛺) is an equi-

ibrium since (16) holds because of 𝑤 = 1(𝑤,𝐸) and Proposition 4.1,
17) holds by definition of 𝑄, (18) holds because 𝐸 = 2(𝑤,𝐸), and for
ll 𝑥 ∈ 𝛺,

𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸(𝑥)) = 𝜃𝜃
(

∫𝛺
𝑅𝜎 (𝑧,𝑤)

𝜃
1−𝜃 𝐸̃(𝑧)

−𝛾
1−𝜃 𝜓(𝑧)𝑑𝑧

)1−𝜃

constant value which implies that the mobility condition (19) holds.
inally, if (𝑤,𝑄,𝐸, 𝜇) is an equilibrium, from Lemma 4.1 𝜇 is given by
30), 𝑤 is the solution to (26) associated to 𝜇, and 𝐸 is the unique
olution to (29) associated to (𝑤,𝐸). Therefore (𝑤,𝐸) = (𝑤,𝐸). □

The mapping  takes only two arguments: 𝑤 and 𝐸. These two vari-
bles are enough to characterize an equilibrium, because Eqs. (11) and
28) relate them with 𝑄 and 𝜇. Proposition 4.5 establishes continuity
f  .

roposition 4.5. The map  is continuous on (𝐾1, ‖ ⋅‖𝐿∞ )×(𝐾2, ‖ ⋅‖𝐿2 ).

The outline of the proof is as follows. To establish the continuity
f 1, we first prove the continuity of the equilibrium distribution
f residents, explicitly given by Lemma 4.1, with respect to 𝑤 and
. Then, we prove the continuity of the solutions to problem (26)
ith respect to 𝜇. To establish the continuity of 2, we first prove the

ontinuity of the source term 𝑓𝑤,𝐸 with respect to 𝑤 and 𝐸, and then
rove the continuity of the solutions to the scalar transport Eq. (29)
ith respect to the source term.

We are now able to prove our main theorem. We recall it here:

heorem. There exists at least one equilibrium, in the sense of Defini-
ion 2.2.

roof. By Proposition 4.5, the map  is continuous from the convex
nd compact set 𝐾1 ×𝐾2 into itself. By Schauder’s fixed-point theorem,

admits at least one fixed-point. Therefore, by Proposition 4.4, there

xists at least one equilibrium, in the sense of Definition 2.2. □
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5. Existence and uniqueness in a semi-discrete case

We consider in this section a semi-discrete version of the model,
where the distribution of firms 𝜈 is the sum of a finite number of Dirac

asses. In other words, there is a finite number of job locations, as
n Achdou et al. (2023). This more specific framework allows to obtain
dditional results: we can prove both existence and uniqueness of
quilibria, and we also study the case where there are no idiosyncratic
references (𝜎 = 0).

Let us present the assumptions and notations related to this setting.
e assume that there are 𝑁 ∈ N∗ workplaces. The commuting cost

s now a set of functions 𝑐𝑖 ∶ 𝛺 → R+, for 𝑖 ∈ {1,… , 𝑁}, where
𝑐𝑖(𝑥) corresponds to the transportation costs to reach the 𝑖th workplace
coming from 𝑥 ∈ 𝛺.

ssumption 5.1. For every 𝑖 ∈ {1,… , 𝑁}, the commuting cost
ssociated to the 𝑖th workplace, 𝑐𝑖, is continuous.

The wages and spatial concentration of firms become two 𝑁-uplets
𝑤1,… , 𝑤𝑁 ) and (𝜈1,… , 𝜈𝑁 ) belonging to (0,+∞)𝑁 , such that the de-
and for labour at the 𝑖th workplace where the wage is 𝑤𝑖 now writes

𝐿𝑖(𝑤𝑖) = 𝜈𝑖𝓁(𝑤𝑖).
According to formula (4), given a collection of wages 𝑤 ∈ (0,+∞)𝑁 ,

he expected revenue of an agent living at 𝑥 ∈ 𝛺 now writes

𝑁
𝜎 (𝑥,𝑤) = 𝜎 ln

(

1
𝑁

𝑁
∑

𝑖=0
𝑒
𝑤𝑖−𝑐𝑖 (𝑥)

𝜎

)

,

here 𝜎 > 0 controls the dispersion of idiosyncratic preferences.5 We
ssume that the workplace number 0 ensures, for each agent, a fixed
alary 𝑤0 and a positive revenue, i.e. 𝑤0 − 𝑐0(𝑥) > 0 for all 𝑥 ∈ 𝛺.

According to (5), the probability for an agent at the position 𝑥 ∈ 𝛺
o choose the workplace 𝑖 ∈ {0,… , 𝑁} is now given by the discrete
ibbs distribution:

𝜎,𝑖(𝑥,𝑤) =
𝑒
𝑤𝑖−𝑐𝑖 (𝑥)

𝜎

∑𝑁
𝑗=0 𝑒

𝑤𝑗−𝑐𝑗 (𝑥)
𝜎

.

The pollution source term 𝑓𝜇,𝑤 is now, for all 𝑧 ∈ 𝛺:

𝜇,𝑤(𝑧) = 𝛼1𝜓(𝑧) + 𝛼2
𝑁
∑

𝑖=1
𝟏𝑧=𝑦𝑖𝜈𝑖𝐹 (𝓁(𝑤𝑖))

+ 𝛼3
𝑁
∑

𝑖=1
∫𝛺

𝛿−1𝟏𝑧∈𝛴𝑖,𝛿 (𝑥)𝜇(𝑥)𝐺𝜎,𝑖(𝑥,𝑤)𝑑𝑥 (31)

where 𝑦𝑖 ∈ 𝛺 corresponds to the coordinate of the 𝑖th workplace, and
𝛴𝑖,𝛿(𝑥) ∶= {𝑠 ∈ 𝛺, ∃𝑡 ∈ [𝑥; 𝑦𝑖], |𝑡− 𝑠| ≤ 𝛿} is the surface of the rectangle
of length |𝑥 − 𝑦𝑖|, of width 𝛿, centred around the segment [𝑥; 𝑦𝑖].

Definition 5.1 reformulates the equilibrium problem in this semi-
discrete case.

Definition 5.1. When the number of workplaces is finite, we say that
(𝑤,𝑄,𝐸, 𝜇) ∈ (0,+∞)𝑁 × 𝐶(𝛺,R∗

+) ×
(

𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+)
)

× 𝑐 (𝛺) is an
equilibrium if

∫𝛺
𝐺𝜎,𝑖(𝑥,𝑤)𝑑𝜇(𝑥) = 𝐿𝑖(𝑤𝑖), ∀𝑖 ∈ {1,… , 𝑁} (32)

𝑆𝜃(𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥))𝜇(𝑥) = 𝜓(𝑥), 𝑓𝑜𝑟 𝜇 − 𝑎.𝑒. 𝑥 ∈ 𝛺 (33)

− 𝛥𝐸(𝑧) + 𝐕(𝑧) ⋅ ∇𝐸(𝑧) + 𝜆𝐸(𝑧) = 𝑓𝜇,𝑤(𝑧), ∀𝑧 ∈ 𝛺 (34)
supp𝜇 ⊂ argmax

𝑥∈𝛺
𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸(𝑥))

(35)

completed with the condition 𝐸 = 0 on 𝜕𝛺.

5 We assume here that 𝑝𝑁 ∶= 1∕𝑁 for all 𝑘 ∈ {1,… , 𝑁}.
7

𝑘

We still assume that Assumptions 2.2 and 2.3 hold. The following
Proposition gives existence and (conditions for) uniqueness of equi-
libria in this semi-discrete setting. The proof relies on a contraction
argument.

Proposition 5.1. There is at least one equilibrium in the sense of
Definition 5.1. Moreover, there exists 𝛼0 > 0 and 𝜃0 > 0 such that the
equilibrium is unique for any (𝛼1, 𝛼2, 𝛼3, 𝜃) ∈ [0; 𝛼0]3 × [0; 𝜃0].

We can also prove, in this setting, the existence of solutions when
there is no idiosyncratic preferences related to job locations, i.e. when
the revenue of an agent is given by

𝑅𝑁 (𝑥,𝑤) = max
𝑖∈{1,…,𝑁}

{𝑤𝑖 − 𝑐𝑖(𝑥)},

for all 𝑥 ∈ 𝛺. Let

𝑉𝑖(𝑤) ∶= {𝑥 ∈ 𝛺,𝑅𝑁 (𝑥,𝑤) = 𝑤𝑖 − 𝑐𝑖(𝑥)}

e the set of agents locations for which working for firm 𝑖 is optimal,
nd, in case of multiple optimal choices, let
𝑠
𝑖 (𝑤) ∶= 𝑉𝑖(𝑤)\ ∪

𝑗≠𝑖
𝑉𝑗 (𝑤)

e the set of agents locations for which 𝑖 is strictly preferred to the
ther options. Thus, for all 𝑖 ∈ {1,… , 𝑁}, the total labour supply at
lies in the interval

[

𝜇
(

𝑉 𝑠
𝑖 (𝑤)

)

, 𝜇
(

𝑉𝑖(𝑤)
)]

, where 𝜇 ∈ 𝑐 (𝛺) is the
quilibrium distribution of residents. The equilibrium condition in the
abour market now writes

𝑖(𝑤𝑖) ∈
[

𝜇
(

𝑉 𝑠
𝑖 (𝑤)

)

, 𝜇
(

𝑉𝑖(𝑤)
)]

, ∀𝑖 ∈ {1,… , 𝑁} (36)

where 𝐿𝑖(𝑤𝑖) is the labour demand at location 𝑖. Moreover, workers
who are not hired by any firm are those for which 𝑤0 is optimal:

1 −
𝑁
∑

𝑖=1
𝐿𝑖(𝑤𝑖) ∈

[

𝜇
(

𝑉 𝑠
0 (𝑤)

)

, 𝜇
(

𝑉0(𝑤)
)]

(37)

The other equilibrium conditions remain unchanged. Proposition 5.2
stablishes existence of equilibria in this case.

roposition 5.2. There exists at least one quadruplet (𝑤,𝑄,𝐸, 𝜇) ∈
(0,+∞)𝑁 × 𝐶(𝛺,R∗

+) ×
(

𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+)
)

× 𝑐 (𝛺) satisfying condi-
ions (33), (34), (35), (36) and (37), completed with 𝐸 = 0 on 𝜕𝛺.

. Properties of the equilibria

In this section, we aim to explore some analytical aspects of the
odel. First, we demonstrate that when the agents are indifferent to
ollution, the equilibrium is a Pareto one. Then, we analyse the effect
f wind on the equilibrium.

.1. Pareto efficiency

At the equilibrium, the Nash distribution of residents solves the
ean-field problem

sup
∈𝑐 (𝛺) ∫𝛺

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄(𝑥), 𝐸̃(𝑥))𝑑𝑚(𝑥). (38)

n the other hand, the Pareto-optimal distribution of residents should
olve

sup
𝑚∈𝑐 (𝛺)∫𝛺

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄[𝑚](𝑥), 𝐸̃[𝑚](𝑥))𝑑𝑚(𝑥) (39)

where, given a distribution of residents 𝑚 ∈ 𝑐 (𝛺), 𝑄[𝑚] is the clearing
rental price solution to (17), and 𝐸[𝑚] is the pollution concentration
solution to (18).

Problems (38) and (39) do not coincide in general, because contrary
to the former, the latter takes into account that at the equilibrium, the
rental price 𝑄 and pollution concentration 𝐸 depend on the distribution

of residents 𝑚.
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Proposition 6.1 below shows that the Nash distribution of residents
also solves

sup
𝑚∈𝑐 (𝛺)∫𝛺

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄[𝑚](𝑥), 𝐸̃(𝑥))𝑑𝑚(𝑥), (40)

where in the criterion only the function 𝑄 depends on 𝑚 (not 𝐸̃).

Proposition 6.1. Fix any 𝛾 ≥ 0 and 𝑤 ∈ 𝐶(𝛺,R∗
+). If the triplet

(𝑄,𝐸, 𝜇) ∈ 𝐶(𝛺,R∗
+) ×

(

𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+)
)

× 𝑐 (𝛺) is solution to (17),
(18) and (19), then 𝜇 solves

sup
𝑚∈𝑐 (𝛺)∫𝛺

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝑄[𝑚](𝑥), 𝐸̃(𝑥))𝑑𝑚(𝑥) (41)

where, for any distribution of residents 𝑚 ∈ 𝑐 (𝛺), 𝑄[𝑚] ∈ 𝐶(𝛺,R∗
+) is the

clearing rental price solution to (17).

Thus, without pollution externality (𝛾 = 0), the clearing rental price
leads to a Pareto equilibrium. Indeed, when 𝛾 = 0, the utility function
does not depend on the pollution argument. However, when 𝛾 > 0,
problem (38) does not coincide with (39). In this case, the residential
market is inefficient, because the agents do not internalize the effects
of their location decisions on air pollution.

6.2. Wind effect

We aim at estimating the overall amount of pollution released,
i.e. the quantity

∫𝛺
𝐸(𝑥) 𝑑𝑥, (42)

and the pollution suffered by an average resident, i.e. the quantity

∫𝛺
𝐸̃(𝑥)𝜇(𝑥) 𝑑𝑥. (43)

The following Proposition shows that the overall amount of pol-
lution released is proportional to the average commuting distance
travelled by an agent.

Proposition 6.2. At the equilibrium,

𝜆∫𝛺
𝐸(𝑥) 𝑑𝑥 = E [|𝑋 − 𝑌 |] , (44)

where the couple (𝑋, 𝑌 ) follows the joint distribution of density 𝑚(𝑥, 𝑦) ∶=
𝜇(𝑥)𝐺𝜎 (𝑥, 𝑦,𝑤).

Remark. If we replace the homogeneous Dirichlet by a Neumann
boundary condition, we have

𝜆∫𝛺
𝐸(𝑥) 𝑑𝑥 = E [|𝑋 − 𝑌 |] − ∫𝜕𝛺

𝐸(𝑠)𝐕(𝑥) ⋅ 𝐧 𝑑𝑠,

where 𝐧 is the unit vector normal to the boundary 𝜕𝛺. The additional
term represents the pollution that is conveyed out of the domain by
wind.

We now turn to the pollution suffered by an average resident.

Proposition 6.3. Assume that 𝐸0 = 1. At the equilibrium,

𝜆∫𝛺
𝐸̃(𝑥)𝜇(𝑥) 𝑑𝑥

= 𝜆 + ∫𝛺
𝑓𝜇,𝑤(𝑥)𝜇(𝑥) 𝑑𝑥 − ∫𝛺

∇𝐸(𝑥) ⋅ ∇𝜇(𝑥) 𝑑𝑥

+ 𝜃
1 − 𝜃 − 𝛾 ∫𝛺

(

𝐕(𝑥) ⋅
∇𝑅𝜎 (𝑥,𝑤)
𝑅𝜎(𝑥,𝑤)

)

𝐸(𝑥)𝜇(𝑥) 𝑑𝑥

− 𝜃 𝛾
(

𝐕(𝑥) ⋅
∇𝑅𝜎 (𝑥,𝑤)

)

(

𝐸̃(𝑥)
𝛾

1−𝜃 − 1
)

𝜇(𝑥) 𝑑𝑥.
8

1 − 𝜃 − 𝛾 1 − 𝜃 ∫𝛺 𝑅𝜎 (𝑥,𝑤)
Remark. If we replace the homogeneous Dirichlet by an homogeneous
Neumann boundary condition, we have

𝜆∫𝛺
𝐸̃(𝑥)𝜇(𝑥) 𝑑𝑥

= 𝜆 + ∫𝛺
𝑓𝜇,𝑤(𝑥)𝜇(𝑥) 𝑑𝑥 − ∫𝛺

∇𝐸(𝑥) ⋅ ∇𝜇(𝑥) 𝑑𝑥

+ 𝜃
1 − 𝜃 − 𝛾 ∫𝛺

(

𝐕(𝑥) ⋅
∇𝑅𝜎 (𝑥,𝑤)
𝑅𝜎 (𝑥,𝑤)

)

𝐸(𝑥)𝜇(𝑥) 𝑑𝑥

− 𝜃
1 − 𝜃 − 𝛾

𝛾
1 − 𝜃 ∫𝛺

(

𝐕(𝑥) ⋅
∇𝑅𝜎 (𝑥,𝑤)
𝑅𝜎(𝑥,𝑤)

)

(

𝐸̃(𝑥)
𝛾

1−𝜃 − 1
)

𝜇(𝑥) 𝑑𝑥

− 1 − 𝜃
1 − 𝜃 − 𝛾 ∫𝜕𝛺

𝐸(𝑠)𝜇(𝑠)𝐕(𝑠) ⋅ 𝐧 𝑑𝑠,

here 𝐧 is the unit vector normal to the boundary 𝜕𝛺. The additional
erm represents the pollution that is conveyed out of the domain by
ind.

Proposition 6.3 has an interesting interpretation that combines both
conomic and meteorological factors. It says that the air quality expe-
ienced by an average resident can be decomposed into three terms: a
ource term, a diffusion term and an advection term.

The source term (second term on the right-hand side of the equa-
ion) refers to the pollution emitted by the cars at the resident’s
ocation, just out front her house. It depends on the automobile traffic
t this location, and therefore, on where people work and live.

The diffusion term (third term on the right-hand side of the equa-
ion) refers to the movement of pollution from surrounding areas
hrough the diffusion process. It occurs due to the concentration gra-
ients present in the atmosphere, with pollution spreading from areas
f high concentration to areas of low concentration. If the gradients of
ollution (∇𝐸) and residents (∇𝜇) are oriented in the same direction
∇𝐸 ⋅ ∇𝜇 ≥ 0), pollution diffuses from areas of high population
ensity to areas with less population density, which tends to decrease
he pollution experienced by residents. However, if the gradients of
ollution and population density are in opposite directions (∇𝐸 ⋅∇𝜇 ≤
), pollution diffuses from areas of low population density to areas
ith high population density, which tends to increase the pollution
xperienced by residents.

The advection terms (two last terms on the right-hand side of the
quation) refer to the movement of pollution by wind. It has an effect
n the pollution suffered by the residents, depending on the relative
rientation of wind (𝐕) and revenue gradient (∇𝑅𝜎 (⋅, 𝑤)). To simplify,
et us assume that 𝛾 = 0. This means that agents do not take pollution
nto account when choosing their place of residence, and merely prefer
o live in proximity to regions with high revenues. If 𝐕 ⋅ ∇𝑅𝜎 (⋅, 𝑤)
s positive, the wind carries pollution towards areas with elevated
evenue levels, where people tend to concentrate, resulting in increased
ollution for residents. On the other hand, if 𝐕 ⋅ ∇𝑅𝜎 (⋅, 𝑤) is negative,
he wind carries pollution away from high revenue areas, reducing the
ollution experienced by residents.

. Numerical simulations

.1. Algorithm

In Section 4, we characterized an equilibrium as a fixed point of a
pecific map. To numerically compute this equilibrium, we employ the
anach fixed-point iterative method. We have indeed demonstrated,
hrough a contraction argument, that uniqueness is ensured when there
s a finite number of workplaces and specific parameters remain small.
n practice, we observe that the limit point computed is the same
or several initial conditions. This suggests that uniqueness holds even
hough we have not proved it in the general case.

At each step, given a wage function 𝑤 and pollution distribution 𝐸,
he algorithm proceeds as follows:
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(1) From 𝑤 and 𝐸, it computes the distribution 𝜇 with (28). Then a
new wage function 𝑤∗ is computed clearing the labour market
(16);

(2) From 𝑤, and 𝜇 computed in step 1, it computes a new pollution
distribution 𝐸∗ solution to (18);

(3) Finally, it computes the residual 𝑟 = ‖𝑤∗ −𝑤‖𝐿∞ + ‖𝐸∗ − 𝐸‖𝐿2 .

he algorithm iterates as long as 𝑟 is greater than a tolerance tol > 0.
Therefore, when the stopping criterion is satisfied, at the output of the
loop, we get a fixed-point, i.e. an equilibrium characterized by 𝑤 and
𝐸. The rental price function 𝑄 and the population distribution 𝜇 are
then respectively recovered from Eqs. (17) and (28).

ALGORITHM 1: Equilibrium computation
Initialize: 𝐸 ← 𝐸(0), 𝑤← 𝑤(0), 𝑟 ← 1

while 𝑟 > tol

1. Wage update: compute 𝑤∗ as the unique solution to

∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤∗)𝜇𝑤∗ ,𝐸 (𝑥) 𝑑𝑥 = 𝐿(𝑦,𝑤∗(𝑦)), ∀𝑦 ∈ 𝛺,

where 𝜇𝑤∗ ,𝐸 is given by (28)

. Pollution update: compute 𝐸∗ as the unique solution to
{

−𝛥𝑢(𝑧) + V(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝑤,𝐸 (𝑧), ∀𝑧 ∈ 𝛺,
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺.

(45)

3. Residual and new values update: 𝑟← ‖𝑤∗ −𝑤‖𝐿∞ + ‖𝐸∗ − 𝐸‖𝐿2 ;
𝑤 ← 𝑤∗; 𝐸 ← 𝐸∗

end while
Compute 𝜇 with

𝜇(𝑥) =
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝑑𝑦
, ∀𝑥 ∈ 𝛺. (46)

ompute 𝑄 with

𝑄(𝑥) = (1 − 𝜃)𝑅𝜎 (𝑥,𝑤)𝜇(𝑥), ∀𝑥 ∈ 𝛺.

Output: 𝑤,𝑄,𝐸, 𝜇.

7.2. Methods

Spatial discretization. For writing convenience, we focus on the case
where 𝛺 = [0, 1]. Let 𝑋ℎ be a uniform grid on 𝛺 with step ℎ ∶= 1∕𝑁ℎ,
𝑁ℎ ∈ N∗. The points of the grids are denoted by 𝑥𝑗 ∶= 𝑗ℎ, for 𝑗 =
0,… , 𝑁ℎ. The same grid is used to approximate both labour Eq. (16)
and pollution dispersion Eq. (18). It would make sense to use a finer one
for the dispersion equation, but this would involve further numerical
complications that we prefer leaving for future research. The wage,
rental price, pollution and residents distribution take the form of 𝑁ℎ-
uplets (𝑤𝑖), (𝑄𝑖), (𝐸𝑖) and (𝜇𝑖), belonging to (0; +∞)𝑁ℎ . All the integrals
are approximated with the rectangle rule.

Economic equilibrium. Labour Eq. (16) is discretized as follows:
𝑁ℎ−1
∑

𝑖=0
ℎ𝐺𝜎 (𝑥𝑖, 𝑥𝑗 , 𝑤)𝜇𝑖 = 𝐿(𝑥𝑗 , 𝑤𝑗 ), ∀𝑗 ∈ {0,… , 𝑁ℎ}, (47)

where

𝐺𝜎(𝑥𝑖, 𝑥𝑗 , 𝑤) = 𝑒
𝑤𝑗−𝑐(𝑥𝑖,𝑥𝑗 )

𝜎

∑𝑁ℎ−1
𝑤𝑘−𝑐(𝑥𝑖,𝑥𝑘 )

,

9

𝑘=0 ℎ 𝑒 𝜎 o
𝜇𝑖 =
𝑅𝜎 (𝑥𝑖, 𝑤)

𝜃
1−𝜃 𝐸̃

− 𝛾
1−𝜃

𝑖
∑𝑁ℎ−1
𝑘=0 𝑅𝜎 (𝑥𝑘, 𝑤)

𝜃
1−𝜃 𝐸̃

− 𝛾
1−𝜃

𝑘

,

𝑅𝜎 (𝑥𝑖, 𝑤) = 𝜎 ln

(𝑁ℎ−1
∑

𝑘=0
𝑒
𝑤𝑘−𝑐(𝑥𝑖,𝑥𝑘 )

𝜎

)

.

To solve the nonlinear system (47), we use the method scipy.optimize.
root contained in the library ‘‘Scipy’’ of Python, which is based on the
Powell hybrid method (Powell, 1970).

Pollution dispersion. To obtain a solution for (18), our strategy is to
numerically simulate the stationary solution to

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝑢(𝑧, 𝑡) − 𝛥𝑢(𝑧, 𝑡) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧, 𝑡) + 𝜆𝑢(𝑧, 𝑡) = 𝑓𝑤,𝐸 (𝑧), ∀(𝑧, 𝑡) ∈ 𝛺 × R+,
𝑢(𝑠, 𝑡) = 0, ∀(𝑠, 𝑡) ∈ 𝜕𝛺 × R+,
𝑢(𝑧, 0) = 𝐸(𝑧), ∀𝑧 ∈ 𝛺.

(48)

Let 𝜏 > 0 be the time step. The solution 𝑢 is discretized in time
and space, such that 𝑢𝑗,𝑛 = 𝑢(𝑗ℎ, 𝑛𝜏), for all (𝑗, 𝑛) ∈ {0,… , 𝑁ℎ} × N. To
approximate Eq. (48), we use an explicit finite-difference scheme, i.e.

(𝜕𝑡𝑢)𝑗,𝑛 ≈
𝑢𝑗,𝑛+1 − 𝑢𝑗,𝑛

𝜏
, (∇𝑢)𝑗,𝑛 ≈

𝑢𝑗+1,𝑛 − 𝑢𝑗−1,𝑛
2ℎ

,

(𝛥𝑢)𝑗,𝑛 ≈
𝑢𝑗−1,𝑛 − 2𝑢𝑗,𝑛 + 𝑢𝑗+1,𝑛

ℎ2
.

Thus, the scheme takes the following form
𝑢𝑗,𝑛+1 − 𝑢𝑗,𝑛

𝜏
=
𝑢𝑗−1,𝑛 − 2𝑢𝑗,𝑛 + 𝑢𝑗+1,𝑛

ℎ2
− 𝑉𝑗

𝑢𝑗+1,𝑛 − 𝑢𝑗−1,𝑛
2ℎ

− 𝜆𝑢𝑗,𝑛 + 𝑓𝑤,𝐸,𝑗 ,

ith the following initial and boundary conditions:

• For all 𝑗 ∈ {0,… , 𝑁ℎ}, 𝑢𝑗,0 = 𝐸𝑗
• For all 𝑛 ∈ N, 𝑢0,𝑛 = 0 and 𝑢𝑁ℎ ,𝑛 = 0 (if homogeneous Dirichlet

boundary conditions), or 𝑢0,𝑛 = 𝑢1,𝑛 and 𝑢𝑁ℎ ,𝑛 = 𝑢𝑁ℎ−1,𝑛 (if
homogeneous Neumann boundary conditions).6

This scheme is first-order accurate in time, and second-order in space.
To ensure stability, the Courant–Friedrichs–Lewy condition must hold:
𝑉 𝜏∕ℎ ≤ 1.

7.3. Parameters

In the following, we assume that the production function is 𝐹 (𝑙) =
𝑙𝛽 , where 𝛽 ∈ [0, 1] and 𝑙 ≥ 0 is the labour factor. We focus on
automobile-related pollution and neglect that stemming from heating
and output production.7 The density of firms 𝜈(𝑦) can take on many
forms. In the context of a monocentric city, there is typically one
Central Business District (CBD), and the density of firms decreases as
the distance from the CBD increases: in the first case, that we call
‘‘classic monocentric city’’, the CBD is located in the geographical
centre of the city; in the second case, called ‘‘shifted monocentric city’’,
it is located in the west of the city (Fig. 2). Finally, we assume that the
transportation cost is linear: 𝑐(𝑥, 𝑦) = 𝑐0‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝛺.

All our baseline parameters are given in Table 1 (see Fig. 3).

7.4. Simulations

7.4.1. The role of pollution aversion
In this simulation, we use the ‘‘classic monocentric city’’ case (Fig. 2,

left). We make the assumption that there is no wind effect, but we

6 In the following simulations, we will indeed use Neumann (instead of
irichlet) boundary conditions, in order to obtain more realistic numerical

esults.
7 In Paris, in 2019, road transport was the main source (53%) of nitrogen

xide emissions (AirParif, 2019).
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Fig. 2. Spatial concentration of firms in the 2D ‘‘classic monocentric city’’ (left), and the 2D ‘‘shifted monocentric city’’ (right).
Fig. 3. Equilibrium in population, pollution and wage in the 2D classic monocentric city, for 𝛾 = 0.5 (top) and 𝛾 = 1.5 (bottom).
Table 1
Baseline parameters.
Parameter Symbol Value

Domain 𝛺 [0; 20] × [0; 20]
Consumption-housing substitution 𝜃 0.75
Aversion to pollution 𝛾 0.5
Transportation costs 𝑐0 1.0
Noise on effective salaries 𝜎 0.15
Capital–labour substitution 𝛽 0.7
Number of firms 𝜈0 1.0
Background pollution level 𝐸0 0.1
Wind V [0.0,0.0]
Diffusion 𝑘 1.0
Lessivage 𝜆 1.0
Coefficient source term 𝛼 1.0
Discretization space step ℎ𝑥 and ℎ𝑦 ℎ𝑥 = 1.0, ℎ𝑦 = 1.0
Discretization time step 𝜏 0.1
Numerical tolerance tol 0.05

do consider diffusion. We assume homogeneous Neumann boundary
conditions on pollution. Fig. 3 displays the numerical results.

The initial situation depicted in Fig. 3 shows that when agents are
less sensitive to pollution (𝛾 is small), population density is higher close
to the city centre. However, the pollution distribution does not reach
its peak in the city centre; instead, it is highest in an area between the
10
central business district (CBD) and the periphery. This is because a lot
of commuting takes place in this particular area. More precisely, indi-
viduals living outside the city centre often opt for jobs near the CBD,
leading to increased commuting and consequently elevated pollution
levels in this region. On the contrary, there is not much commuting
happening within the city centre itself, because residents from this zone
work close to where they live, and there is no significant movement
across the centre to reach the other side.

When we raise individuals’ responsiveness to pollution (higher 𝛾),
we notice a couple of things. First, the wage distribution remains
relatively unchanged, indicating that workers do not alter their work-
place choices. Second, we see that workers leave the most polluted
zone, namely the intermediate area, to live in the periphery and, for
a small portion of them, in the city centre. With more agents living in
the periphery, there is more commuting and therefore more pollution
(Fig. 4).

7.4.2. The role of wind
We conduct numerical simulations in the 2D case to illustrate the

role of wind. The city is assumed to have a monocentric structure,
but with the business district shifted to the West (Fig. 2, right). We
consider two types of wind, constant across the city: a West-East wind
with velocity of 𝐕 = (4.5; 0) and an East-West wind with velocity of
𝐕 = (−4.5; 0). We set 𝛾 = 1.5, and other parameters as given in Table 1.
We assume homogeneous Neumann boundary conditions on pollution.
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Fig. 4. Local and global pollution in the monocentric city, for different values of 𝛾. Local pollution refers to the integral ∫𝛺 𝐸̃𝜇, and global pollution to the integral ∫𝛺 𝐸̃.
Fig. 5. Equilibrium in population and pollution in the ‘‘shifted’’ monocentric city, 𝛾 = 1.5, without wind (left), with an East-West wind (middle), and with a West-East wind (right).
Fig. 5 displays the resulting equilibria in pollution and population for
the different wind regimes.

When the wind blows from an East-West direction (Fig. 5, middle),
it pushes pollution towards the business district. In this case, the
direction of the wind aligns with the direction of the revenue gradient.
As a result, we see that people tend to live farther away from the
business district, leading to increased overall pollution levels. This
also contributes to increase the contamination suffered by an average
resident (Fig. 6). For the same reasons as mentioned in Section 7.4.1,
we also observe the presence of a middle area, between the business
district and the periphery, which is more polluted and less densely
populated.

When the wind blows from a West-East direction (Fig. 5, right), it
pushes pollution away from the business district. In this case, the di-
rection of the wind is opposite to the direction of the revenue gradient.
As a result, people tend to live closer to the business district, leading to
decreased overall pollution levels. This also contributes to reduce the
contamination suffered by an average resident (Fig. 6).

We observe that the East-West wind has a greater impact on total
pollution released compared to the West-East wind. This is because in
the former case, the wind carries pollution to a more densely populated
area, resulting in larger population movements to escape the pollution.
This effect diminishes as the sensitivity of people to air pollution, 𝛾,
decreases. When 𝛾 = 0, the wind has no influence on the amount of
pollution released.
11
8. Conclusion

We developed an equilibrium model of city in which the labour
market, the residential market and pollution are interdependent. Our
model differs from existing literature in that it allows for cities of any
shape and includes a realistic description of pollution dispersion.

We proved existence (and, under additional assumptions, unique-
ness) of equilibria, and we proposed a numerical method for computing
solutions. We then examined various analytical and numerical appli-
cations of the model. In particular, we looked at the role of two
parameters, pollution aversion and wind, on the equilibrium.

Our results emphasize the relevance of integrating physical and eco-
nomic approaches in the study of urban air pollution. They open several
avenues of research, such as investigating whether the equilibrium
is unique, incorporating endogenous firm location and agglomeration
externalities, examining the relationship between urban pollution and
inequality through agent heterogeneity, and analysing regulatory issues
such as the effects of a gasoline tax on the urban structure.
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Appendix. Proofs

On the convergence of 𝑅𝜎 to 𝑅 when 𝜎 goes to zero

Proposition A.1. For every 𝑥 ∈ 𝛺,

𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

→ max
𝑦∈𝛺

𝑤(𝑦) − 𝑐(𝑥, 𝑦)

when 𝜎 tends to 0.
12
Proof. Fix 𝑥 ∈ 𝛺.
Step 1. We observe that

𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

≤ 𝜎 ln

(

max
𝑦∈𝛺

𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎

)

= max
𝑥∈𝛺

𝑤(𝑦) − 𝑐(𝑥, 𝑦).

Step 2. Let us fix 𝜀 > 0, and introduce

𝑌𝜀 = {𝑦 ∈ 𝛺 ∶ 𝑤(𝑦) − 𝑐(𝑥, 𝑦) ≥ ‖𝑤 − 𝑐(𝑥, ⋅)‖∞ − 𝜀}.

Note that from the continuity of 𝑤− 𝑐(𝑥, ⋅), the Lebesgue measure of 𝑌𝜀
is positive. We observe that

𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

≥ 𝜎 ln
(

|𝑌𝜀|𝑒
‖𝑤−𝑐(𝑥,⋅)‖∞−𝜀

𝜎

)

= ‖𝑤 − 𝑐(𝑥, ⋅)‖∞ − 𝜀 + 𝜎 ln
(

|𝑌𝜀|
)

.

Step 3. Finally, we get

‖𝑤 − 𝑐(𝑥, ⋅)‖∞ − 𝜀+ 𝜎 ln
(

|𝑌𝜀|
)

≤ 𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

≤ ‖𝑤 − 𝑐(𝑥, ⋅)‖∞ .

Therefore,

‖𝑤 − 𝑐(𝑥, ⋅)‖∞ − 𝜀 ≤ lim inf
𝜎→0

𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑥)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

≤ lim sup
𝜎→0

𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑥)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

≤ ‖𝑤 − 𝑐(⋅, 𝑦)‖∞ .

Since it is true for an arbitrary 𝜀 > 0, we deduce that

lim
𝜎→0

𝜎 ln
(

∫𝛺
𝑒
𝑤(𝑦)−𝑐(𝑥,𝑦)

𝜎 𝑑𝑦
)

= ‖𝑤 − 𝑐(𝑥, ⋅)‖∞ . □

Proof of Proposition 3.1

By Lemma 4.1, we have

𝜇(𝑥) =
𝑅(𝑥,𝑤∗)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃

∫ 1
0 𝑅(𝑦,𝑤∗)

𝜃
1−𝜃 𝐸̃(𝑦)−

𝛾
1−𝜃 𝑑𝑦

, ∀𝑥 ∈ [0, 1]

Thus, by Eq. (23),

𝐸̃(𝑥) = 𝐸0 + 𝜆−1
∫ 𝑥0 𝑅(𝑠,𝑤∗)

𝜃
1−𝜃 𝐸̃(𝑠)−

𝛾
1−𝜃 𝑑𝑠

1 ∗
𝜃 − 𝛾
∫0 𝑅(𝑠,𝑤 ) 1−𝜃 𝐸̃(𝑠) 1−𝜃 𝑑𝑠
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Differentiating w.r.t 𝑥 ∈ [0, 1], we obtain the following differential
quation

̃ ′(𝑥) = 𝜆−1
𝑅(𝑥,𝑤∗)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃

∫ 1
0 𝑅(𝑠,𝑤∗)

𝜃
1−𝜃 𝐸̃(𝑠)−

𝛾
1−𝜃 𝑑𝑠

which, together with the boundary conditions 𝐸̃(0) = 𝐸0 and 𝐸̃(1) =
𝐸0 + 𝜆−1, admits the following unique solution

𝐸̃(𝑥) =
⎡

⎢

⎢

⎣

𝐸
1+𝛾−𝜃
1−𝜃

0 +
(

(

𝐸0 + 𝜆−1
)

1+𝛾−𝜃
1−𝜃 − 𝐸

1+𝛾−𝜃
1−𝜃

0

) ∫ 𝑥0 𝑅(𝑠,𝑤∗)
𝜃

1−𝜃 𝑑𝑠

∫ 1
0 𝑅(𝑠,𝑤∗)

𝜃
1−𝜃 𝑑𝑠

⎤

⎥

⎥

⎦

1−𝜃
1+𝛾−𝜃

Now, let 𝛽 ∶= (1 + 𝛾 − 𝜃)∕(1 − 𝜃), and
(𝑥) ∶= ∫ 𝑥0 𝑅(𝑠,𝑤∗)

𝜃
1−𝜃 𝑑𝑠∕ ∫ 1

0 𝑅(𝑠,𝑤
∗)

𝜃
1−𝜃 𝑑𝑠. From (25), the derivative

of 𝐸̃(𝑥) with respect to 𝛽 has the same sign as

(𝑥) =
ln(𝐸0)𝐸

𝛽
0 +

(

ln(𝐸0 + 𝜆−1)(𝐸0 + 𝜆−1)𝛽 − ln(𝐸0)𝐸
𝛽
0

)

𝜑(𝑥)

𝐸𝛽0 +
(

(𝐸0 + 𝜆−1)𝛽 − 𝐸
𝛽
0

)

𝜑(𝑥)

− ln
(

𝐸𝛽0 +
(

(𝐸0 + 𝜆−1)𝛽 − 𝐸
𝛽
0

)

𝜑(𝑥)
)

We have 𝐽 (0) = (1 − 𝛽) ln(𝐸0), and for all 𝑥 ∈ [0, 1], 𝐽 ′(𝑥) has the
same sign as

𝜑′(𝑥)

⎡

⎢

⎢

⎢

⎣

ln(𝐸0 + 𝜆−1)(𝐸0 + 𝜆−1)𝛽 − ln(𝐸0)𝐸
𝛽
0

−
ln(𝐸0)𝐸

𝛽
0 +

(

ln(𝐸0 + 𝜆−1)(𝐸0 + 𝜆−1)𝛽 − ln(𝐸0)𝐸
𝛽
0

)

𝜑(𝑥)

𝐸𝛽0 +
(

(𝐸0 + 𝜆−1)𝛽 − 𝐸
𝛽
0

)

𝜑(𝑥)
− 1

⎤

⎥

⎥

⎥

⎦

which is equivalent, as 𝜆 goes to zero, to

𝜑′(𝑥) ln(𝜆−1)(𝜆−𝛽 − 1)

𝜑′(𝑥) is positive, and the quantity ln(𝜆−1)(𝜆−𝛽 − 1) is also positive if
𝜆 is smaller than 1. Therefore, for all 𝑥 ∈ [0, 1], 𝐹 (𝑥) > 0 and then
𝑑𝐸̃(𝑥)∕𝑑𝛽 > 0. As 𝛽 increases with 𝛾, this means that 𝑑𝐸̃(𝑥)∕𝑑𝛾 > 0.

Proof of Lemma 4.1

If (𝑤,𝑄,𝐸, 𝜇) is an equilibrium, then by Eqs. (2) and (17) we have,
for all 𝑥 ∈ 𝛺

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝜇(𝑥), 𝐸̃(𝑥)) = 𝜃𝜃
𝑅𝜎 (𝑥,𝑤)𝜃𝐸̃(𝑥)−𝛾𝜓(𝑥)1−𝜃

𝜇(𝑥)1−𝜃

Moreover, the mobility condition (19) is equivalent to: supp𝜇 ⊂
argmax
𝑥∈𝛺

𝑈𝜃,𝛾 (𝑅𝜎(𝑥,𝑤), 𝜇(𝑥), 𝐸(𝑥)). This implies that there exists a real

number 𝛽 such that
{

𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝜇(𝑥), 𝐸̃(𝑥)) ≤ 𝛽, ∀𝑥 ∈ 𝛺,
𝑈𝜃,𝛾 (𝑅𝜎 (𝑥,𝑤), 𝜇(𝑥), 𝐸̃(𝑥)) = 𝛽, ∀𝑥 ∈ supp𝜇.

By (53), for all 𝑥 ∈ 𝛺, 𝑅𝜎 (𝑥,𝑤) ≥ 𝑅(𝑥,𝑤) ≥ 𝑤(𝑥)−𝑐(𝑥, 𝑥) ≥ 𝓁−1(𝜂). Then

𝜃 𝓁
−1(𝜂)𝜃𝐸̃(𝑥)−𝛾𝜓(𝑥)1−𝜃

𝜇(𝑥)1−𝜃
≤ 𝜃𝜃

𝑅𝜎 (𝑥,𝑤)𝜃𝐸̃(𝑥)−𝛾𝜓(𝑥)1−𝜃

𝜇(𝑥)1−𝜃
≤ 𝛽

This implies that for all 𝑥 ∈ supp 𝜇,

𝜃𝜃
𝓁−1(𝜂) ‖𝐸̃‖−𝛾𝐿∞‖𝜓‖1−𝜃𝐿∞

|𝛽| + 1
≤ 𝜇(𝑥)1−𝜃

This means that 𝜇 is bounded away from zero by a positive constant.
By continuity of 𝜇, we deduce that supp 𝜇 = 𝛺. Then

𝜃𝜃
𝑅𝜎 (𝑥,𝑤)𝜃𝐸̃(𝑥)−𝛾𝜓(𝑥)1−𝜃

𝜇(𝑥)1−𝜃
= 𝛽, ∀𝑥 ∈ 𝛺

Hence

𝜇(𝑥) =
(

𝜃𝜃
)

1
1−𝜃

𝑅𝜎(𝑥,𝑤)
𝜃

1−𝜃 𝐸̃(𝑥)
−𝛾
1−𝜃 𝜓(𝑥)
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𝛽

Since 𝜇 is a probability measure on 𝛺

𝜇(𝑥) =
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝜓(𝑦) 𝑑𝑦
, ∀𝑥 ∈ 𝛺

Proof of Proposition 4.1

We first need to prove the following Lemma, which gives a regular-
ity result about the equilibrium wage maps.

Lemma A.1. Fix any 𝜇 ∈ 𝑐 (𝛺). If 𝑤 ∈ 𝐶(𝛺,R∗
+) is a solution to (16),

then 𝑤 ∈ 𝐶1(𝛺,R∗
+). Moreover, there exists 𝐶1, 𝐶2 > 0 independent of 𝜇

such that for all 𝑦 ∈ 𝛺

|∇𝑤(𝑦)| ≤ 𝑒‖𝑤‖𝐿∞ (𝐶1𝓁(𝑤(𝑦)) + 𝐶2) (49)

roof. If 𝑤 ∈ 𝐶(𝛺,R∗
+) is a solution to (16), then for all 𝑦 ∈ 𝛺

𝑒
𝑤(𝑦)
𝜎

𝓁(𝑤(𝑦))
=
⎛

⎜

⎜

⎝

∫𝛺
𝑒
−𝑐(𝑥,𝑦)
𝜎

∫𝛺 𝑒
𝑤(𝑧)−𝑐(𝑥,𝑧)

𝜎 𝑑𝑧
𝑑𝜇(𝑥)

⎞

⎟

⎟

⎠

−1

𝜈(𝑦) (50)

et

(𝑣) ∶= 𝑒
𝑣
𝜎

𝓁(𝑣)

he function ℎ is a smooth bijection from R∗
+ to R+. Using Eq. (50), we

have, for all 𝑦 ∈ 𝛺

𝑤(𝑦) = ℎ−1
⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∫𝛺
𝑒
−𝑐(𝑥,𝑦)
𝜎

∫𝛺 𝑒
𝑤(𝑧)−𝑐(𝑥,𝑧)

𝜎 𝑑𝑧
𝑑𝜇(𝑥)

⎞

⎟

⎟

⎠

−1

𝜈(𝑦)

⎤

⎥

⎥

⎥

⎦

hich shows that 𝑤 is differentiable because ℎ−1, 𝑐(𝑥, ⋅) and 𝜈 are.
Now, if we differentiate Eq. (16), we get, for 𝑦 ∈ 𝛺

∫𝛺
∇𝑦𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝜇(𝑥) = ∇𝑦𝐿(𝑦,𝑤(𝑦)) + 𝜕𝑣𝐿(𝑦,𝑤(𝑦))∇𝑤(𝑦)

.e.

∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)

𝜎
(∇𝑤(𝑦) − ∇𝑦𝑐(𝑥, 𝑦)) 𝑑𝜇(𝑥)

= ∇𝑦𝐿(𝑦,𝑤(𝑦)) + 𝜕𝑣𝐿(𝑦,𝑤(𝑦))∇𝑤(𝑦)

or all 𝑦 ∈ 𝛺, 𝜕𝑣𝐿(𝑦,𝑤(𝑦)) < 0, then ∫𝛺
𝐺𝜎 (𝑥,𝑦,𝑤)

𝜎 𝑑𝜇(𝑥)−𝜕𝑣𝐿(𝑦,𝑤(𝑦)) > 0,
nd therefore

𝑤(𝑦) =
∇𝑦𝐿(𝑦,𝑤(𝑦)) + ∫𝛺

𝐺𝜎 (𝑥,𝑦,𝑤)∇𝑦𝑐(𝑥,𝑦)
𝜎

∫𝛺
𝐺𝜎 (𝑥,𝑦,𝑤)

𝜎 𝑑𝜇(𝑥) − 𝜕𝑣𝐿(𝑦,𝑤(𝑦))

e have

∇𝑦𝐿(𝑦,𝑤(𝑦)) + ∫𝛺

𝐺𝜎 (𝑥, 𝑦,𝑤)∇𝑦𝑐(𝑥, 𝑦)
𝜎

|

|

|

|

|

≤ ‖∇𝜈‖𝐿∞𝓁(𝑤(𝑦))+𝜎−1‖∇𝑦𝑐‖𝐿∞

and
|

|

|

|

∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)

𝜎
𝑑𝜇(𝑥) − 𝜕𝑣𝐿(𝑦,𝑤(𝑦))

|

|

|

|

≥ ∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)

𝜎
𝑑𝜇(𝑥)

≥ 𝑒−
‖𝑤‖𝐿∞+‖𝑐‖𝐿∞

𝜎

𝜎|𝛺|

hen, for all 𝑦 ∈ 𝛺

∇𝑤(𝑦)| ≤ 𝜎|𝛺|𝑒
‖𝑤‖𝐿∞+‖𝑐‖𝐿∞

𝜎 (‖∇𝜈‖𝐿∞𝓁(𝑤(𝑦)) + 𝜎−1‖∇𝑦𝑐‖𝐿∞ )

which gives the desired estimate. □

Lemma A.1 shows that wage maps which are solutions to (16)
belong to the following subset of 𝐶(𝛺,R∗

+)

𝐾 ∶=
{

𝑧 ∈ 𝐶1(𝛺,R∗ ), |∇𝑧(𝑦)| ≤ 𝑒‖𝑧‖𝐿∞ (𝐶 𝓁(𝑧(𝑦)) + 𝐶 ) ∀𝑦 ∈ 𝛺
}

0 + 1 2
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where 𝐶1 and 𝐶2 are given in Lemma A.1. The subset 𝐾0 is non empty
it contains the subset of constant and positive functions). Without
oss of generality we can also assume that the solutions belong to the
nterior of 𝐾0 (if not the case, expand the subset by taking an arbitrarily
arger constant 𝐶2).

Now, let 𝜀 > 0, and consider the map 𝛬𝜇 ∶ 𝐾̊0 → R defined by

𝛬𝜇(𝑧) = 𝜙𝜇(𝑧) − ∫𝛺 ∫

𝑧(𝑦)

𝜀
𝐿(𝑦, 𝑠)𝑑𝑠𝑑𝑦

where 𝜙𝜇(𝑧) = ∫𝛺 𝑅𝜎 (𝑥, 𝑧)𝑑𝜇(𝑥). The map 𝛬𝜇 is continuous on (𝐾̊0, ‖⋅‖∞)
and strictly convex. Moreover, for all 𝑧 ∈ 𝐾̊0

𝛬𝜇(𝑧) = ∫𝛺
𝑅𝜎 (𝑥, 𝑧)𝑑𝜇(𝑥) + ∫𝛺

𝜈(𝑦)𝜋(𝑧(𝑦))𝑑𝑦

because 𝐿(𝑦, 𝑠) = −𝜋′(𝑠)𝜈(𝑦). To show existence of a minimizer, we will
provide a priori bounds on the solution and its derivative to reduce the
minimization problem to a compact subset of 𝐾̊0.

First a priori bound. Let fix 𝑧 and 𝑧̂ two elements of 𝐾̊0 such that

𝛬𝜇(𝑧) ≤ 𝛬𝜇(𝑧̂)

We note that

𝛬𝜇(𝑧) = 𝜙𝜇(𝑧) − ∫𝑦∈𝛺 ∫

𝑧(𝑦)

𝑠=𝜀
𝐿(𝑦, 𝑠) 𝑑𝑠 𝑑𝑦 ≥ ‖𝑧‖∞ − ‖𝑐‖∞

− ∫𝛺 ∫

𝑧(𝑦)

𝜀
𝐿(𝑦, 𝑠) 𝑑𝑠 𝑑𝑦

since 𝑅𝜎 (𝑥, 𝑧) ≥ 𝑅(𝑥, 𝑧) ≥ ‖𝑧‖∞ − ‖𝑐‖∞. Then

𝛬𝜇(𝑧̂) ≥ ‖𝑧‖∞ − ‖𝑐‖∞ − ∫𝛺 ∫

𝑧(𝑦)

𝜀
𝐿(𝑦, 𝑠) 𝑑𝑠 𝑑𝑦

and

‖𝑧‖∞ ≤ ‖𝑐‖∞ + 𝜙𝜇(𝑧̂) + ∫𝛺 ∫

𝑧(𝑦)

𝑧̂(𝑦)
𝐿(𝑦, 𝑠) 𝑑𝑠 𝑑𝑦

Now

𝜙𝜇(𝑧̂) ≤ ‖𝑧̂‖∞ + 𝜎 ln(2)

because 𝑅𝜎 (𝑥, 𝑧̂) ≤ 𝑅(𝑥, 𝑧̂) + 𝜎 ln(2) and 𝑅(𝑥, 𝑧̂) ≤ ‖𝑧̂‖∞. Besides, due to
the monotonicity and positivity of the functions 𝐿(𝑦, ⋅), we have

∫

𝑧(𝑦)

𝑧̂(𝑦)
𝐿(𝑦, 𝑠) 𝑑𝑠 ≥ 𝐿(𝑦, 𝑧̂(𝑦))(𝑧(𝑦) − 𝑧̂(𝑦)) ≥ 𝐿(𝑦, 𝑧̂(𝑦))𝑧(𝑦)

Finally

‖𝑧‖∞ ≤ ‖𝑐‖∞ + ‖𝑧̂‖∞ + 𝜎 ln(2) + ‖𝑧‖∞ ∫𝛺
𝐿(𝑦, 𝑧̂(𝑦)) 𝑑𝑦

Thus, if 𝑧 and 𝑧̂ belong to 𝐾̊0 and satisfy
{

𝛬𝜇(𝑧) ≤ 𝛬𝜇(𝑧̂)
∫𝛺 𝐿(𝑦, 𝑧̂(𝑦)) 𝑑𝑦 < 1

we obtain a similar upper bound as in Petit (2022)

‖𝑧‖∞ ≤
‖𝑐‖∞ + ‖𝑧̂‖∞ + 𝜎 ln(2)
1 − ∫𝛺 𝐿(𝑦, 𝑧̂(𝑦)) 𝑑𝑦

s a consequence, if 𝑧 is a minimizer of problem (26), we have

𝑧‖𝐿∞ ≤𝑀1 (51)

here

1 = inf

{

‖𝑐‖∞ + ‖𝑧̂‖∞ + 𝜎 ln(2)
1 − ∫𝛺 𝐿(𝑦, 𝑧̂(𝑦)) 𝑑𝑦

, 𝑧̂ ∈ 𝐾̊0, 𝐿(𝑦, 𝑧̂(𝑦)) 𝑑𝑦 < 1

}

(52)

Second a priori bound. We are now looking for a bound from below. We
claim that if 𝑧 ∈ 𝐾̊0 is a minimizer, then for all 𝑦 ∈ 𝛺, 𝐿(𝑦, 𝑧(𝑦)) ≤ 1,
.e. 𝑧(𝑦) ≥ 𝓁−1(𝜈(𝑦)−1). For 𝑧 ∈ 𝐾̊0, the Fréchet derivative of 𝛬𝜇 at 𝑧 is

the following application

𝐷𝑧𝛬𝜇 ∶ 𝐾̊0 → R, ℎ↦ 𝐺𝜎(𝑥, 𝑦, 𝑧)ℎ(𝑦) 𝑑𝑦 𝑑𝜇(𝑥) − 𝐿(𝑦, 𝑧(𝑦))ℎ(𝑦) 𝑑𝑦
14

∫𝛺2 ∫𝛺 𝑙
Assume by contradiction that there exists 𝑦∗ ∈ 𝛺, 𝐿(𝑦∗, 𝑧(𝑦∗)) > 1. As 𝐿
nd 𝑧 are continuous, there exists an open ball 𝐵𝑟(𝑦∗) ⊂ 𝛺 with 𝑟 > 0,
uch that for all 𝑦 ∈ 𝐵𝑟(𝑦∗), 𝐿(𝑦, 𝑧(𝑦)) > 1. Let ℎ0 ∈ 𝐾̊0 and such that
0
∣𝐵𝑟(𝑦∗)

> 0 and ℎ0
∣𝛺∖𝐵𝑟(𝑦∗)

= 0. Then

∫𝛺
𝐿(𝑦, 𝑧(𝑦))ℎ0(𝑦) 𝑑𝑦 = ∫𝐵𝑟(𝑦∗)

𝐿(𝑦, 𝑧(𝑦))ℎ0(𝑦) 𝑑𝑦 > ∫𝐵𝑟(𝑦∗)
ℎ0(𝑦) 𝑑𝑦

nd

𝛺
2 𝐺𝜎 (𝑥, 𝑦, 𝑧)ℎ

0(𝑦) 𝑑𝑦 𝑑𝜇(𝑥) = ∫𝛺×𝐵𝑟(𝑦∗)
𝐺𝜎 (𝑥, 𝑦, 𝑧)ℎ0(𝑦) 𝑑𝑦 𝑑𝜇(𝑥)

≤ ∫𝛺×𝐵𝑟(𝑦∗)
ℎ0(𝑦) 𝑑𝑦 𝑑𝜇(𝑥)

≤ ∫𝐵𝑟(𝑦∗)
ℎ0(𝑦) 𝑑𝑦

herefore

𝑧𝛬𝜇 .ℎ
0 < 0

hich means that in this case, 𝑧 is not a minimizer. Conclusion: if
∈ 𝐾̊0 is a minimizer, then

𝑦 ∈ 𝛺, 𝓁(𝑧(𝑦)) ≤ 𝜈(𝑦)−1 ≤ 𝜂 (53)

Third a priori bound. Now, if 𝑧 ∈ 𝐾0 satisfies the a priori bounds (51)
and (53), then, by inequality (49)

‖∇𝑧‖𝐿∞ ≤ 𝑒𝑀1 (𝐶1𝜂 + 𝐶2)

eaning that we have a constant 𝑀2 > 0 such that

‖∇𝑧‖𝐿∞ ≤𝑀2

Let us introduce the following subset of 𝐾̊0

𝐾1 ∶=
{

𝑧 ∈ 𝐶1(𝛺,R+), 𝑧(⋅) ≥ 𝓁−1(𝜂), ‖𝑧‖𝐿∞ ≤𝑀1, ‖∇𝑧‖𝐿∞ ≤𝑀2
}

he subset 𝐾1 is convex and compact for the uniform norm ‖ ⋅ ‖𝐿∞ , as
a consequence of Ascoli–Arzelà theorem. We have proved that

min
𝑧∈𝐾̊0

𝛬𝜇(𝑧) = min
𝑧∈𝐾1

𝛬𝜇(𝑧)

onclusion. Let us take a minimizing sequence (𝑤𝑛)𝑛∈N of the problem

min
∈𝐾1

𝛬𝜇(𝑤)

he compactness of 𝐾1 and continuity of 𝛬𝜇 ensure the existence of a
inimizer 𝑤 ∈ 𝐾1. The uniqueness is ensured by the strict convexity of
𝜇 . This provides the existence and uniqueness of a solution to (26).

haracterization of the minimizer. Since 𝛬𝜇 is strictly convex and
mooth, 𝑤 ∈ 𝐶(𝛺,R∗

+) is a minimizer if and only if 𝐷𝑤𝛬𝜇 = 0, i.e. for
all 𝑦 ∈ 𝛺

∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤)𝑑𝜇(𝑥) = 𝐿(𝑦,𝑤(𝑦))

roof of Proposition 4.2

The proof follows (Achdou et al., 2023), subsection 3.1. Fix any
∈ 𝑐 (𝛺). By Proposition 4.1, if 𝑤 ∈ 𝐶(𝛺,R∗

+) is solution to (16) then
is the unique minimizer of

min
∈𝐶(𝛺)

{

∫𝛺
𝜈(𝑦) [𝐹 (𝓁(𝑤(𝑦))) − 𝓁(𝑤(𝑦))𝑤(𝑦)] 𝑑𝑦

+ ∫𝛺
𝑅𝜎 (𝑥,𝑤)𝑑𝜇(𝑥) + I𝐾1

(𝑤)
}

(54)

here I𝐾1
(𝑤) = 0 if 𝑤 ∈ 𝐾1, else I𝐾1

(𝑤) = +∞. The Fenchel-Rockafellar
ual problem writes

sup
{

𝜈(𝑦)𝐹
(

𝜈(𝑦)−1𝑙(𝑦)
)

𝑑𝑦 − 𝐶𝜎 (𝑙)
}

(55)

∈𝐶(𝛺) ∫𝛺
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where

𝐶𝜎 (𝑙) ∶= sup
𝑤∈𝐶(𝛺)

{

∫𝛺
𝑙(𝑦)𝑤(𝑦) 𝑑𝑦 − ∫𝛺

𝑅𝜎 (𝑥,𝑤)𝑑𝜇(𝑥) − I𝐾1
(𝑤)

}

(56)

Problem (54) is a convex and continuous minimization problem. Thus,
the supremum in (55) is attained for a certain 𝑙∗ ∈ 𝐶(𝛺) and strong
uality holds:

min
∈𝐶(𝛺)

{

∫𝛺
𝜈(𝑦) [𝐹 (𝓁(𝑤(𝑦))) − 𝓁(𝑤(𝑦))𝑤(𝑦)] 𝑑𝑦

+ ∫𝛺
𝑅𝜎 (𝑥,𝑤)𝑑𝜇(𝑥) + I𝐾1

(𝑤)
}

= max
𝑙∈𝐶(𝛺)

{

∫𝛺
𝜈(𝑦)𝑓

(

𝜈(𝑦)−1𝑙(𝑦)
)

𝑑𝑦 − 𝐶𝜎 (𝑙)
}

A necessary condition for 𝐶𝜎 (𝑙∗) not being equal to infinity is 𝑙∗ ≥ 0
and ∫𝛺 𝑙

∗(𝑦) 𝑑𝑦 ≤ 1. In this case, optimality conditions for (56) yield

𝑙∗(𝑦) = ∫𝛺
𝐺𝜎 (𝑥, 𝑦,𝑤) 𝑑𝜇(𝑥), ∀𝑦 ∈ 𝛺

ow, consider the map 𝛩 ∶ 𝐶(𝛺) → 𝐶(𝛺) that associates, for any
∈ 𝐶(𝛺), the function 𝑙 defined by 𝑦 ↦ ∫𝛺 𝐺𝜎 (𝑥, 𝑦,𝑤) 𝑑𝜇(𝑥). By

roposition 4.1, 𝛩 is a bijection. Thus problem (55) is equivalent to

max
∈𝐶(𝛺)

{

∫𝛺
[𝜈(𝑦)𝐹

(

𝜈(𝑦)−1𝑙(𝑦)
)

− 𝑙(𝑦)𝛩−1(𝑙)(𝑦)] 𝑑𝑦

+ ∫𝛺
𝑅𝜎 (𝑥,𝛩−1(𝑙))𝑑𝜇(𝑥) + I𝐾1

(𝛩−1(𝑙))
}

which is equivalent to

max
𝑤∈𝐾1

{

∫𝛺
[𝜈(𝑦)𝐹

(

𝜈(𝑦)−1𝛩(𝑤)(𝑦)
)

− 𝛩(𝑤)(𝑦)𝑤(𝑦)] 𝑑𝑦 + ∫𝛺
𝑅𝜎(𝑥,𝑤)𝑑𝜇(𝑥)

}

.e.

max
∈𝐾1

{

∫𝛺
[𝜈(𝑦)𝐹

(

𝜈(𝑦)−1𝑙𝜇,𝑤(𝑦)
)

− 𝑙𝜇,𝑤(𝑦)𝑤(𝑦)]𝑑𝑦 + ∫𝛺
𝑅𝜎 (𝑥,𝑤)𝑑𝜇(𝑥)

}

Thus

min
𝑤∈𝐾1

{

∫𝛺
𝜈(𝑦) [𝐹 (𝓁(𝑤(𝑦))) − 𝓁(𝑤(𝑦))𝑤(𝑦)] 𝑑𝑦 + ∫𝛺

𝑅𝜎(𝑥,𝑤)𝑑𝜇(𝑥)
}

= max
𝑤∈𝐾1

{

∫𝛺
[𝜈(𝑦)𝐹

(

𝜈(𝑦)−1𝑙𝜇,𝑤(𝑦)
)

− 𝑙𝜇,𝑤(𝑦)𝑤(𝑦)]𝑑𝑦 + ∫𝛺
𝑅𝜎(𝑥,𝑤)𝑑𝜇(𝑥)

}

(57)

et 𝑤0 be the unique solution to (16): for all 𝑦 ∈ 𝛺, 𝜈(𝑦)𝓁(𝑤0) = 𝑙𝜇,𝑤0
(𝑦).

Hence

∫𝛺
𝜈(𝑦)

[

𝐹 (𝓁(𝑤0(𝑦))) − 𝓁(𝑤0(𝑦))𝑤0(𝑦)
]

𝑑𝑦 + ∫𝛺
𝑅𝜎 (𝑥,𝑤0)𝑑𝜇(𝑥)

= ∫𝛺
[𝜈(𝑦)𝐹

(

𝜈(𝑦)−1𝑙𝜇,𝑤0
(𝑦)

)

− 𝑙𝜇,𝑤0
(𝑦)𝑤0(𝑦)]𝑑𝑦 + ∫𝛺

𝑅𝜎 (𝑥,𝑤0)𝑑𝜇(𝑥)

which, together with equality (57), ensures that 𝑤0 achieves the supre-
mum in (27).

Proof of Proposition 4.3

For the existence and uniqueness part, we apply Riesz’s repre-
sentation theorem. Let us consider the following inner product, on
𝐻1

0 (𝛺)

(𝑢, 𝑣) ∶= ∫𝛺
∇𝑢 ⋅ ∇𝑣 + ∫𝛺

(𝐕 ⋅ ∇𝑢) 𝑣 + 𝜆∫𝛺
𝑢𝑣

The positive definite property of this inner product is ensured by the
fact that 𝜆 is positive, and

∫𝛺
(𝐕 ⋅ ∇𝑢) 𝑢 = ∫𝛺

𝐕 ⋅ ∇
( 1
2
𝑢 ⋅ 𝑢

)

= −∫𝛺
(∇ ⋅ 𝐕)

( 1
2
𝑢 ⋅ 𝑢

)

+ ∫𝜕𝛺

( 1
2
𝑢 ⋅ 𝑢

)

𝐕 ⋅ 𝐧 𝑑𝑠

= 0
15
here we first used the divergence theorem, and then the fact that
⋅ 𝐕(𝑧) = 0 for all 𝑧 ∈ 𝛺, and 𝑢(𝑠) = 0 for all 𝑠 ∈ 𝜕𝛺 (see Section 2.4).
ow, consider the linear functional

∶ 𝐻1
0 (𝛺) → R, 𝑣 ↦ ∫𝛺

𝑓𝑤,𝑞𝑣

Hölder inequality gives, for all 𝑣 ∈ 𝐻1
0 (𝛺)

|𝛬(𝑣)| ≤ ‖𝑓𝑤,𝑞‖𝐿2 ‖𝑣‖𝐿2

Thus, 𝛬 is a bounded linear operator on 𝐻1
0 (𝛺), thus a linear form

on this Hilbert space. By Riesz’s representation theorem, there exists
a unique 𝑢𝑤,𝑞 ∈ 𝐻1

0 (𝛺) such that for all 𝑣 ∈ 𝐻1
0 (𝛺), 𝛬(𝑣) = (𝑢𝑤,𝑞|𝑣) i.e.

∫𝛺
∇𝑢𝑤,𝑞 ⋅ ∇𝑣 + ∫𝛺

(𝐕 ⋅ ∇𝑢) 𝑣 + 𝜆∫𝛺
𝑢𝑤,𝑞𝑣 = ∫𝛺

𝑓𝑤,𝑞𝑣 (58)

The positivity of 𝑢𝑤,𝑞 is a direct consequence of the maximum
rinciple. Regarding the majoration of ∇𝑢𝑤,𝑞 in 𝐿2(𝛺), Eq. (58) applied
o 𝑣 = 𝑢𝑤,𝑞 yields

∇𝑢𝑤,𝑞‖2𝐿2 + 𝜆‖𝑢𝑤,𝑞‖
2
𝐿2 ≤ ‖𝑓𝑤,𝑞‖𝐿2 ‖𝑢𝑤,𝑞‖𝐿2

y Hölder inequality. Then

min(1, 𝜆)‖𝑢𝑤,𝑞‖2𝐻1
0
≤ ‖𝑓𝑤,𝑞‖𝐿2 ‖𝑢𝑤,𝑞‖𝐻1

0
≤ |𝛺| ‖𝑓𝑤,𝑞‖

2
𝐿∞ ‖𝑢𝑤,𝑞‖𝐻1

0

here ‖𝑣‖𝐻1
0
∶=

(

‖𝑣‖2
𝐿2 + ‖∇𝑣‖2

𝐿2

)1∕2
for all 𝑣 ∈ 𝐻1

0 (𝛺). Therefore

𝑢𝑤,𝑞‖𝐻1
0
≤ |𝛺| 𝛿−2 min(1, 𝜆)−1

hich yields

∇𝑢𝑤,𝑞‖𝐿2 ≤ |𝛺| 𝛿−2 min(1, 𝜆)−1

Convexity of 𝐾2 is immediate. The proof of compactness is inspired
y Le Dret (2013). Let us denote 𝑘0 ∶= |𝛺| 𝛿−2 min(1, 𝜆)−1. By Rellich’s
heorem, the embedding 𝐻1

0 (𝛺) ⊂ 𝐿2(𝛺) is compact. Therefore 𝐾2,
hich is bounded in 𝐻1

0 (𝛺), is relatively compact in 𝐿2(𝛺). Let us show
hat 𝐾2 is closed in 𝐿2(𝛺). If (𝑣𝑛) ∈ 𝐾N

2 converges to 𝑣 ∈ 𝐿2(𝛺), then (𝑣𝑛)
s bounded in 𝐻1

0 (𝛺) and contains a subsequence (𝑣𝑛′ ) that converges
eakly to 𝑣′ ∈ 𝐻1

0 (𝛺). By uniqueness of the limit, 𝑣′ = 𝑣, and the
ower semicontinuity of the norm implies ‖𝑣‖𝐻1 ≤ lim inf𝑛′∞ ‖𝑣𝑛′‖𝐻1 ≤
0 (here we consider the semi-norm ‖𝑣‖𝐻1

0
∶= ‖∇𝑣‖𝐿2 by Poincaré

nequality). Consequently, 𝑣 ∈ 𝐾2, and 𝐾2 is compact.

roof of Proposition 4.5

ontinuity of the map 1 on (𝐾1, ‖ ⋅ ‖𝐿∞ )
We first need to prove the following two lemmas. The first one

roves continuity of the equilibrium distribution of residents, explicitly
iven by (28), with respect to 𝑤 and 𝐸. The second one proves (weak)
ontinuity of the solutions to problem (26) with respect to 𝜇.

emma A.2.

(1) Let 𝐸 ∈ 𝐾2, and (𝑤𝑛) be a sequence in 𝐾1. If ‖𝑤𝑛 −𝑤‖𝐿∞ → 0 for
some 𝑤 ∈ 𝐾1, then ‖𝜇(𝑤𝑛, 𝐸) − 𝜇(𝑤,𝐸)‖𝐿1 → 0.

(2) Let 𝑤 ∈ 𝐾1, and (𝐸𝑛) be a sequence in 𝐾2. If ‖𝐸𝑛 − 𝐸‖𝐿2 → 0 for
some 𝐸 ∈ 𝐾2, then ‖𝜇(𝑤,𝐸𝑛) − 𝜇(𝑤,𝐸)‖𝐿1 → 0.

Proof.

(1) Let us denote 𝜇𝑛 ∶= 𝜇(𝑤𝑛, 𝐸) and 𝜇 ∶= 𝜇(𝑤,𝐸). Let 𝑥 ∈ 𝛺. We
have

|𝜇𝑛(𝑥) − 𝜇(𝑥)|

=
|

|

|

|

|

|

𝑅𝜎 (𝑥,𝑤𝑛)
𝜃

1−𝜃 𝐸̃(𝑥)
−𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤𝑛)
𝜃

1−𝜃 𝐸̃(𝑦)
−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

−
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)

−𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)
−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

|

|

|

|

|

|

=
(

𝑅𝜎 (𝑦,𝑤𝑛)
𝜃

1−𝜃 𝐸̃(𝑦)
−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

)−1 (

𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)
−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

)−1
∫𝛺 ∫𝛺
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⋅
|

|

|

|

|

∫𝛺
(𝐸̃(𝑥)𝐸̃(𝑦))

−𝛾
1−𝜃 𝜓(𝑥)𝜓(𝑦)

[

(𝑅𝜎 (𝑥,𝑤𝑛)𝑅𝜎 (𝑦,𝑤))
𝜃

1−𝜃

− (𝑅𝜎 (𝑦,𝑤𝑛)𝑅𝜎 (𝑥,𝑤))
𝜃

1−𝜃

]

𝑑𝑦
|

|

|

|

|

≤ 𝐶 ∫𝛺
|

|

|

(𝑅𝜎 (𝑥,𝑤𝑛)𝑅𝜎 (𝑦,𝑤))
𝜃

1−𝜃 − (𝑅𝜎 (𝑦,𝑤𝑛)𝑅𝜎 (𝑥,𝑤))
𝜃

1−𝜃
|

|

|

𝑑𝑦

for some constant 𝐶 > 0, because 𝐸̃, 𝜓 and 𝑅𝜎 (⋅, 𝑤) are bounded
from below and above by positive constants. Especially, 𝑅𝜎 (⋅, 𝑤)
is bounded from below by 𝑅− ∶= 𝓁−1(𝜂), and from above by
𝑅+ ∶= 𝑀1 + 𝜎 ln(2), with 𝑀1 given by (52). The function R ∋
𝑎↦ 𝑎

𝜃
1−𝜃 has continuous and bounded derivative on [𝑅2

−;𝑅
2
+]. It

is therefore Lipschitz on this segment, hence for all 𝑦 ∈ 𝛺,
|

|

|

|

(𝑅𝜎 (𝑥,𝑤𝑛)𝑅𝜎 (𝑦,𝑤))
𝜃

1−𝜃 − (𝑅𝜎(𝑦,𝑤𝑛)𝑅𝜎 (𝑥,𝑤))
𝜃

1−𝜃
|

|

|

|

≤ 𝐶 |

|

𝑅𝜎 (𝑥,𝑤𝑛)𝑅𝜎 (𝑦,𝑤) − 𝑅𝜎 (𝑦,𝑤𝑛)𝑅𝜎 (𝑥,𝑤)||

for some constant 𝐶 ≥ 0. Besides
|

|

𝑅𝜎 (𝑥,𝑤𝑛)𝑅𝜎 (𝑦,𝑤) − 𝑅𝜎 (𝑦,𝑤𝑛)𝑅𝜎 (𝑥,𝑤)||
≤ (𝑅𝜎 (𝑦,𝑤𝑛) + 𝑅𝜎 (𝑦,𝑤))|𝑅𝜎 (𝑥,𝑤𝑛) − 𝑅𝜎 (𝑥,𝑤)|

≤ 2𝑅+ |𝑅𝜎 (𝑥,𝑤𝑛) − 𝑅𝜎 (𝑥,𝑤)|

≤ 𝐶‖𝑤 −𝑤𝑛‖𝐿∞

for another 𝐶 ≥ 0. The majoration comes from the fact that ln(⋅)
and exp(⋅) are Lipschitz on compact subsets of, respectively, R∗

+
and R. Thus

|𝜇𝑛(𝑥) − 𝜇(𝑥)| ≤ 𝐶‖𝑤 −𝑤𝑛‖𝐿∞

for another 𝐶 ≥ 0. This gives the 𝐿1 convergence of (𝜇𝑛) to 𝜇.
(2) Let us denote 𝜇𝑛 ∶= 𝜇(𝑤,𝐸𝑛) and 𝜇 ∶= 𝜇(𝑤,𝐸). For all 𝑥 ∈ 𝛺, we

have

|𝜇𝑛(𝑥) − 𝜇(𝑥)|

=
|

|

|

|

|

|

𝑅𝜎 (𝑥,𝑤)
𝜃

1−𝜃 𝐸𝑛(𝑥)
−𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸𝑛(𝑦)
−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

−
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)

−𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)
−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

|

|

|

|

|

|

=
(

∫𝛺
𝑅𝜎 (𝑦,𝑤)

𝜃
1−𝜃 𝐸𝑛(𝑦)

−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

)−1 (

∫𝛺
𝑅𝜎 (𝑦,𝑤)

𝜃
1−𝜃 𝐸̃(𝑦)

−𝛾
1−𝜃 𝜓(𝑦) 𝑑𝑦

)−1

⋅
|

|

|

|

|

∫𝛺
(𝑅𝜎 (𝑥,𝑤)𝑅𝜎 (𝑦,𝑤))

𝜃
1−𝜃 𝜓(𝑥)𝜓(𝑦)

[

(𝐸𝑛(𝑥)𝐸̃(𝑦))
−𝛾
1−𝜃

− (𝐸𝑛(𝑦)𝐸̃(𝑥))
−𝛾
1−𝜃

]

𝑑𝑦
|

|

|

|

|

≤ 𝐶 ∫𝛺
|

|

|

(𝐸𝑛(𝑥)𝐸̃(𝑦))
−𝛾
1−𝜃 − (𝐸𝑛(𝑦)𝐸̃(𝑥))

−𝛾
1−𝜃

|

|

|

𝑑𝑦

for some constant 𝐶 ≥ 0, because 𝐸̃, 𝜓 and 𝑅𝜎 (⋅, 𝑤) are bounded
from below and above by positive constants. Now, the function
R ∋ 𝑎 ↦ 𝑎

−𝛾
1−𝜃 has continuous and bounded derivative on

[𝐸2
0 ; +∞) and is therefore Lipschitz on this interval, hence for

all 𝑥, 𝑦 ∈ 𝛺,
|

|

|

(𝐸𝑛(𝑥)𝐸̃(𝑦))
−𝛾
1−𝜃 − (𝐸𝑛(𝑦)𝐸̃(𝑥))

−𝛾
1−𝜃 |

|

|

≤ 𝐶|𝐸𝑛(𝑥)𝐸̃(𝑦) − 𝐸𝑛(𝑦)𝐸̃(𝑥)|

for another 𝐶 ≥ 0. Besides, for all 𝑥, 𝑦 ∈ 𝛺

|𝐸𝑛(𝑥)𝐸̃(𝑦)−𝐸𝑛(𝑦)𝐸̃(𝑥)| ≤ 𝐸𝑛(𝑥)|𝐸𝑛(𝑦)−𝐸(𝑦)|+𝐸𝑛(𝑦)|𝐸𝑛(𝑥)−𝐸(𝑥)|

Thus, for all 𝑥, 𝑦 ∈ 𝛺

|𝜇𝑛(𝑥) − 𝜇(𝑥)| ≤ 𝐶
[

𝐸𝑛(𝑥)|𝐸𝑛(𝑦) − 𝐸(𝑦)| + 𝐸𝑛(𝑦)|𝐸𝑛(𝑥) − 𝐸(𝑥)|
]

By integrating the previous inequality on 𝛺2, and using Hölder
inequality, we get

‖𝜇𝑛 − 𝜇‖𝐿1 ≤ 2𝐶|𝛺| ‖𝐸𝑛‖𝐿2 ‖𝐸𝑛 − 𝐸‖𝐿2

which gives the 𝐿1 convergence of (𝜇𝑛) to 𝜇.

Remark. We could simplify the proof by reasoning by composition.
However, we opted for the current proof method because we needed
16

Lipschitz estimates to prove the uniqueness result in Section 5. □
Lemma A.3. Let (𝜇𝑛) be a sequence in 𝑐 (𝛺) and (𝑤𝑛) be the sequence
of associated minimizers in (26). If 𝜇𝑛 → 𝜇 for the weak-⋆ topology then
(𝑤𝑛) converges to 𝑤0, the minimizer associated with 𝜇, in (𝐾1, ‖ ⋅ ‖𝐿∞ ).

Proof. For any 𝑤 ∈ 𝐾1 and 𝜇1, 𝜇2 ∈ (𝛺), we have

|𝛬𝜇1 (𝑤) − 𝛬𝜇2 (𝑤)| =
|

|

|

|

∫𝛺
𝑅𝜎 (𝑥,𝑤)(𝑑𝜇1(𝑥) − 𝑑𝜇2(𝑥))

|

|

|

|

≤ (‖𝑤‖𝐿∞ + 𝜎 ln(2) + ‖∇𝑐‖𝐿∞ )𝑑1(𝜇1, 𝜇2)

which comes from the fact that the map 𝛺 ∋ 𝑥 ↦ 𝑅𝜎 (𝑥,𝑤) is
uniformly bounded by ‖𝑤‖∞ + 𝜎 ln(2) and is ‖∇𝑐‖𝐿∞ -Lipschitz. Then
by compactness of 𝐾1,

min
𝐾1

𝛬𝜇𝑛 → min
𝐾1

𝛬𝜇

and there exists 𝑤̃ ∈ 𝐾1 such that, up to the extraction of a subse-
quence, 𝑤𝑛 → 𝑤̃ in (𝐾1, ‖ ⋅ ‖𝐿∞ ). Therefore
|

|

|

|

min
𝐾1

𝛬𝜇𝑛 − 𝛬𝜇(𝑤̃)
|

|

|

|

= |

|

|

𝛬𝜇𝑛 (𝑤𝑛) − 𝛬𝜇(𝑤̃)
|

|

|

≤ |𝛬𝜇𝑛 (𝑤𝑛) − 𝛬𝜇(𝑤𝑛)| + |𝛬𝜇(𝑤𝑛) − 𝛬𝜇(𝑤̃)|

≤ (‖𝑤𝑛‖𝐿∞ + 𝜎 ln(2) + ‖∇𝑐‖𝐿∞ )𝑑1(𝜇𝑛, 𝜇)

+ |𝛬𝜇(𝑤𝑛) − 𝛬𝜇(𝑤̃)|

which goes to zero by continuity of 𝛬𝜇 . This ensures that min
𝐾1

𝛬𝜇𝑛
converges to 𝛬𝜇(𝑤̃) when 𝑛 goes to +∞. The uniqueness of the limit
ensures that

𝛬𝜇(𝑤̃) = min
𝐾1

𝛬𝜇

From Proposition 4.1, there is a unique solution to (26), namely 𝑤0.
Hence 𝑤̃ = 𝑤0.

Remark. We could simplify the proof by reasoning by composition.
However, we opted for the current proof method because we needed
Lipschitz estimates to prove the uniqueness result in Section 5. □

We are now able to prove continuity of 1 on (𝐾1, ‖ ⋅ ‖𝐿∞ ).
If (𝑤𝑛) converges to 𝑤 in (𝐾1, ‖ ⋅ ‖𝐿∞ ), by Lemma A.2 (𝜇(𝑤𝑛, 𝐸))

converges to 𝜇(𝑤,𝐸) in 𝐿1(𝛺), and therefore weakly converges to the
same limit. Then, by Lemma A.3, (1(𝑤𝑛, 𝐸)) uniformly converges to
1(𝑤,𝐸).

Similarly, if (𝐸𝑛) converges to 𝐸 in (𝐾2, ‖ ⋅ ‖𝐿2 ), by Lemma A.2
(𝜇(𝑤,𝐸𝑛)) converges to 𝜇(𝑤,𝐸) in 𝐿1(𝛺), and therefore weakly con-
verges to the same limit. Then, by Lemma A.3, (1(𝑤,𝐸𝑛)) uniformly
converges to 1(𝑤,𝐸).

Continuity of the map 2 on (𝐾2, ‖ ⋅ ‖𝐿2 )
We first need to prove the following preliminary results, which

show continuity of the source term 𝑓𝑤,𝐸 with respect to 𝑤 and 𝐸, and
continuity of the solutions to the scalar transport equation with respect
to the source term.

Lemma A.4.

(1) Let 𝐸 ∈ 𝐾2, and (𝑤𝑛) be a sequence in 𝐾1. If ‖𝑤𝑛 −𝑤‖𝐿∞ → 0 for
some 𝑤 ∈ 𝐾1, then ‖𝑓𝑤𝑛 ,𝐸 − 𝑓𝑤,𝐸‖𝐿∞ → 0.

(2) Let 𝑤 ∈ 𝐾1, and (𝐸𝑛) be a sequence in 𝐾2. If ‖𝐸𝑛 − 𝐸‖𝐿2 → 0 for
some 𝐸 ∈ 𝐾2, then ‖𝑓𝑤,𝐸𝑛 − 𝑓𝑤,𝐸‖𝐿∞ → 0.

Proof.

(1) Let us denote 𝑓𝑛 ∶= 𝑓𝑤𝑛 ,𝐸 , 𝑓 ∶= 𝑓𝑤,𝐸 , 𝜇𝑛 ∶= 𝜇(𝑤𝑛, 𝐸) and
𝜇 ∶= 𝜇(𝑤,𝐸). Let 𝑧 ∈ 𝛺. We have

|𝑓𝑛(𝑧) − 𝑓 (𝑧)| ≤ 𝛼2𝜈(𝑧)|𝐹 (𝓁(𝑤𝑛(𝑧))) − 𝐹 (𝓁(𝑤(𝑧)))|

+ 𝛼3 𝛿−1||𝐺𝜎 (𝑥, 𝑦,𝑤𝑛)𝜇𝑛(𝑥)
∫𝛺2 |
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− 𝐺𝜎 (𝑥, 𝑦,𝑤)𝜇(𝑥)
|

|

|

𝑑𝑥𝑑𝑦

≤ 𝛼2𝐶‖𝑤𝑛 −𝑤‖𝐿∞

+ 𝛼3 ∫𝛺2
𝛿−1 |

|

𝜇𝑛(𝑥) − 𝜇(𝑥)||𝐺𝜎 (𝑥, 𝑦,𝑤𝑛) 𝑑𝑥𝑑𝑦

+ 𝛼3 ∫𝛺2
𝛿−1 |

|

𝐺𝜎 (𝑥, 𝑦,𝑤𝑛) − 𝐺𝜎 (𝑥, 𝑦,𝑤)||𝜇(𝑥) 𝑑𝑥𝑑𝑦

for some constant 𝐶 ≥ 0, because the function 𝐹 (𝓁(⋅)) is differen-
tiable and therefore Lipschitz on [0;𝑀1], with 𝑀1 given by (52).
Now, given that

• ‖𝜇𝑛 − 𝜇‖𝐿1 → 0 (by Lemma A.2)
• |

|

𝐺𝜎 (𝑥, 𝑦,𝑤𝑛) − 𝐺𝜎 (𝑥, 𝑦,𝑤)|| ⟶𝑛∞ 0 for all 𝑥, 𝑦 ∈ 𝛺

• the function 𝐺𝜎 is bounded (for example, by |𝛺|

−1𝑒
𝑀1+‖𝑐‖∞

𝜎 )

The right term then goes to zero as 𝑛 goes to infinity and is
independent of 𝑧. Therefore,

‖𝑓𝑤𝑛 ,𝐸 − 𝑓𝑤,𝐸‖𝐿∞ → 0.

(2) Let us denote 𝑓𝑛 ∶= 𝑓𝑤,𝐸𝑛 , 𝑓 ∶= 𝑓𝑤,𝐸 , 𝜇𝑛 ∶= 𝜇(𝑤,𝐸𝑛) and
𝜇 ∶= 𝜇(𝑤,𝐸). Let 𝑧 ∈ 𝛺. We have

|𝑓𝑛(𝑧) − 𝑓 (𝑧)| ≤ 𝛼3 ∫𝛺2
𝛿−1𝐺𝜎 (𝑥, 𝑦,𝑤) ||𝜇𝑛(𝑥) − 𝜇(𝑥)|| 𝑑𝑥𝑑𝑦

The function 𝐺𝜎 is bounded and ‖𝜇𝑛 − 𝜇‖𝐿1 → 0 by Lemma A.2.
Therefore, ‖𝑓𝑤,𝐸𝑛 − 𝑓𝑤,𝐸‖𝐿∞ → 0.

Remark. We could simplify the proof by reasoning by composition.
However, we opted for the current proof method because we needed
Lipschitz estimates to prove the uniqueness result in Section 5. □

Lemma A.5. Let 𝑓 ∈ 𝐿∞(𝛺), and 𝑢𝑓 ∈ 𝐻1
0 (𝛺) be the unique solution to

the following equation
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓 (𝑧), ∀𝑧 ∈ 𝛺
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

There exists a constant 𝐶(𝛺), depending only on 𝛺, such that

‖𝑢𝑓‖𝐿2 ≤ 𝐶(𝛺)‖𝑓‖𝐿∞

Proof. As 𝑢𝑓 is a weak solution, we have, for any 𝑣 ∈ 𝐻1
0 (𝛺)

∫𝛺
∇𝑢𝑓 ⋅ ∇𝑣 + ∫𝛺

(𝐕 ⋅ ∇𝑢) 𝑣 + 𝜆∫𝛺
𝑢𝑓 𝑣 = ∫𝛺

𝑓𝑣

Now, with 𝑣 = 𝑢𝑓 we have, because 𝜆 is positive, and using Hölder
inequality

‖∇𝑢𝑓‖2𝐿2 ≤ ‖𝑓‖𝐿2 ‖𝑢𝑓‖𝐿2

By Poincaré inequality

‖𝑢𝑓‖𝐿2 ≤ 𝜋
diam(𝛺)

‖∇𝑢𝑓‖𝐿2

Then

‖𝑢𝑓‖𝐿2 ≤ 𝜋
diam(𝛺)

‖𝑓‖𝐿2 ≤ 𝜋|𝛺|

1∕2

diam(𝛺)
‖𝑓‖𝐿∞ □

Corollary A.1. Let (𝑓𝑛) be a sequence in 𝐿∞. If ‖𝑓𝑛−𝑓‖𝐿∞ → 0 for some
∈ 𝐿∞, then ‖𝑢𝑓𝑛 − 𝑢𝑓‖𝐿2 → 0 in (𝐾2, ‖ ⋅ ‖𝐿2 ), where 𝑢𝑓𝑛 is the unique
olution to

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝑛(𝑧), ∀𝑧 ∈ 𝛺
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

roof. For every 𝑛 ∈ N, 𝑢𝑓𝑛 − 𝑢𝑓 is solution to

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = (𝑓𝑛 − 𝑓 )(𝑧), ∀𝑧 ∈ 𝛺
17

𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺 f
By Lemma A.5, we have 𝐶(𝛺) such that

‖𝑢𝑓𝑛 − 𝑢𝑓‖𝐿2 ≤ 𝐶(𝛺) ‖𝑓𝑛 − 𝑓‖𝐿∞

which gives the desired convergence. □

We are now able to prove continuity of 2 on (𝐾2, ‖ ⋅ ‖𝐿2 ).
If (𝑤𝑛) converges to 𝑤 in (𝐾1, ‖⋅‖𝐿∞ ), by Lemma A.4, 𝑓𝑤𝑛 ,𝐸 uniformly

converges to 𝑓𝑤,𝐸 . Then, by Corollary A.1, (2(𝑤𝑛, 𝐸)) goes to 2(𝑤,𝐸)
in 𝐿2(𝛺).

Similarly, if (𝐸𝑛) converges to 𝐸 in (𝐾2, ‖⋅‖𝐿∞ ), by Lemma A.4, 𝑓𝑤,𝐸𝑛
uniformly converges to 𝑓𝑤,𝐸 . Then, by Corollary A.1, (2(𝑤,𝐸𝑛)) goes
to 2(𝑤,𝐸) in 𝐿2(𝛺).

Proof of Proposition 5.1

For the existence part, the reasoning closely follows the continuous
case. First, we obtain an explicit formula for the equilibrium distri-
bution of residents. Indeed, if (𝑤,𝑄,𝐸, 𝜇) ∈ (0,+∞)𝑁 × 𝐶(𝛺,R∗

+) ×
(

𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+)
)

× 𝑐 (𝛺) is an equilibrium, then

𝜇(𝑥) =
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝜓(𝑦) 𝑑𝑦
, ∀𝑥 ∈ 𝛺.

The proof is very similar to that of Lemma 8.4 in Petit (2022).
By Lemma 8.2 in Petit (2022), 𝑤 belongs to a convex and com-

pact subset 𝐾1 of (0,+∞)𝑁 , that only depends on the (𝐿𝑖)𝑖=1,…,𝑁 , the
𝑐𝑖)𝑖=1,…,𝑁 and 𝑁 .

Moreover, our proof of Proposition 4.3 can be easily adapted to
how that 𝐸 belongs to a convex and compact subset 𝐾2 of 𝐿2(𝛺) that
epends only on 𝛺, 𝜆 and 𝑁 .

Let us define the map  ∶ 𝐾1 × 𝐾2 → 𝐾1 × 𝐾2 by the following
onstruction:

(1) To any (𝑤,𝐸) ∈ 𝐾1 ×𝐾2, we associate the probability 𝜇(𝑤,𝐸) on
𝛺 with density

𝛺 ∋ 𝑥 ↦
𝑅𝜎 (𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝑑𝑦
(59)

with respect to the Lebesgue measure,
(2) We define 1(𝑤,𝐸) as the unique minimizer of

min
𝑧∈(0,+∞)𝑁

{

𝜙𝜇(𝑤,𝐸)(𝑧) −
𝑁
∑

𝑖=1
∫

𝑧𝑖

𝑠=𝜀
𝐿𝑖(𝑠)𝑑𝑠

}

.

(3) We define 2(𝑤,𝐸) as the unique solution of
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝑤,𝐸 (𝑧), ∀𝑧 ∈ 𝛺,
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺.

The map  is well-defined, in particular, the existence of a unique
inimizer in (2) is ensured by Lemma 8.2 in Petit (2022), and the

xistence of a unique solution to the PDE in (3) is guaranteed by our
roposition 4.3. From the proof of Theorem 8.2 in Petit (2022), the
unction 1 is continuous with respect to 𝑤. It is also continuous with
espect to 𝐸 because if (𝐸𝑛) converges to 𝐸 in (𝐾2, ‖ ⋅ ‖𝐿2 ), then by
emma A.2 (𝜇(𝑤,𝐸𝑛)) converges to 𝜇(𝑤,𝐸) in 𝐿1(𝛺), and therefore
eakly converges to the same limit. Then, by Lemma 8.3 in Petit

2022), (1(𝑤,𝐸𝑛)) uniformly converges to 1(𝑤,𝐸). The proof of the
ontinuity of 2 with respect to 𝑤 and 𝐸 can be very easily derived
rom the one given in the continuous case. Thus,  is a continuous map
rom the convex and compact subset 𝐾1 ×𝐾2 into itself. By Schauder’s
ixed-point theorem, it admits at least one fixed-point, which is an equi-
ibrium in the sense of Definition 5.1. This concludes on the existence
art.

Regarding the uniqueness of the solution, we first need to prove the
ollowing Lemma.
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Lemma A.6. There exists 𝜃0 > 0, depending only on the (𝐿𝑖)𝑖=1,…,𝑁 and
n 𝑤0, such that for any 𝜃 ∈ [0; 𝜃0], the equilibrium is unique if and only
f the non-linear PDE
{

−𝛥𝐸(𝑧) + 𝐕(𝑧) ⋅ ∇𝐸(𝑧) + 𝜆𝐸(𝑧) = 𝑓𝜇(𝐸),𝑤(𝐸)(𝑧), ∀𝑧 ∈ 𝛺
𝐸(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

(60)

dmits a unique solution, where (𝑤(𝐸), 𝑄(𝐸), 𝜇(𝐸)) ∈ (0,+∞)𝑁 ×
𝐶(𝛺,R∗

+) × 𝑐 (𝛺) is defined as the unique solution of the system formed
by Eqs. (32), (33) and (35) for any given 𝐸 ∈ 𝐻1

0 (𝛺) ∩ 𝐶(𝛺,R∗
+).

Proof. We know, from Theorem 8.3 in Petit (2022), that there exists
𝜃0 > 0, depending only on the (𝐿𝑖)𝑖=1,…,𝑁 and on 𝑤0, such that for every
𝜃 ∈ [0; 𝜃0] and any given 𝐸 ∈ 𝐾2, the system formed by Eqs. (32), (33)
and (35) admits a unique solution (𝑤(𝐸), 𝑄(𝐸), 𝜇(𝐸)) ∈ 𝐾1 ×𝐶(𝛺,R∗

+) ×
𝑐 (𝛺).

Our claim is that, for 𝜃 ∈ [0; 𝜃0], (𝑤1, 𝑄1, 𝐸1, 𝜇1) ∈ (0,+∞)𝑁 ×
𝐶(𝛺,R∗

+) ×
(

𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+)
)

× 𝑐 (𝛺) is an equilibrium if and only
if:

• 𝑤1 = 𝑤(𝐸1), 𝑄1 = 𝑄(𝐸1), 𝜇1 = 𝜇(𝐸1),
• and 𝐸1 solves
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝜇(𝑢),𝑤(𝑢)(𝑧), ∀𝑧 ∈ 𝛺
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

If (𝑤1, 𝑄1, 𝐸1, 𝜇1) is an equilibrium, (𝑤1, 𝑄1, 𝜇1) is solution to (32)–
(33)–(35) and consequently 𝑤1 = 𝑤(𝐸1), 𝑄1 = 𝑄(𝐸1) and 𝜇1 = 𝜇(𝐸1).
Therefore, by Eq. (34),
{

−𝛥𝐸1(𝑧) + 𝐕(𝑧) ⋅ ∇𝐸1(𝑧) + 𝜆𝐸1(𝑧) = 𝑓𝜇(𝐸1),𝑤(𝐸1)(𝑧), ∀𝑧 ∈ 𝛺
𝐸1(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

Reciprocally, it is easy to check that if 𝐸1 ∈ 𝐻1
0 (𝛺) ∩ 𝐶(𝛺,R∗

+) verifies
{

−𝛥𝐸1(𝑧) + 𝐕(𝑧) ⋅ ∇𝐸1(𝑧) + 𝜆𝐸1(𝑧) = 𝑓𝜇(𝐸1),𝑤(𝐸1)(𝑧), ∀𝑧 ∈ 𝛺
𝐸1(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

and 𝑤1 = 𝑤(𝐸1), 𝑄1 = 𝑄(𝐸1), 𝜇1 = 𝜇(𝐸1), then (𝑤1, 𝑄1, 𝐸1, 𝜇1) is an
equilibrium.

Thus, there is a unique equilibrium if and only if the PDE
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝜇(𝑢),𝑤(𝑢)(𝑧), ∀𝑧 ∈ 𝛺
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

admits a unique solution. □

Let 𝜃 ∈ [0, 𝜃0], with 𝜃0 given by Lemma A.6. To prove uniqueness,
we thus have to prove that Eq. (60) has a unique solution.

Let us consider the map  that associates, for any 𝐸 ∈ 𝐾2, the
unique solution 𝑢 ∈ 𝐾2 to
{

−𝛥𝑢(𝑧) + 𝐕(𝑧) ⋅ ∇𝑢(𝑧) + 𝜆𝑢(𝑧) = 𝑓𝜇(𝐸),𝑤(𝐸)(𝑧), ∀𝑧 ∈ 𝛺
𝑢(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

We aim to prove that  is a contraction mapping. Let 𝛼 ∶=
max{𝛼1, 𝛼2, 𝛼3}. Recall that (𝛼1, 𝛼2, 𝛼3) are the coefficients of the pol-
ution source term 𝑓𝜇,𝑤 given by Eq. (31). By Lemma A.5, there exists
constant 𝐶, independent of (𝛼1, 𝛼2, 𝛼3), such that for all 𝐸1, 𝐸2 ∈ 𝐾2,

‖ (𝐸1) −  (𝐸2)‖𝐿2 ≤ 𝐶‖𝑓𝑤(𝐸1),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸2)‖𝐿∞ (61)

Now, for all 𝐸1, 𝐸2 ∈ 𝐾2

‖𝑓𝑤(𝐸1),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸2)‖𝐿∞ ≤ ‖𝑓𝑤(𝐸1),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸1)‖𝐿∞

+ ‖𝑓𝑤(𝐸2),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸2)‖𝐿∞ (62)

By Lemma A.4 (1),

‖𝑓𝑤(𝐸1),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸1)‖𝐿∞ ≤ 𝛼𝐶1‖𝜇(𝐸1) − 𝜇(𝐸2)‖𝐿1

+ 𝛼𝐶2‖𝑤(𝐸1) −𝑤(𝐸2)‖𝐿∞ (63)

for some positive constants 𝐶 and 𝐶 independent of (𝛼 , 𝛼 , 𝛼 ).
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1 2 1 2 3
By definition, 𝜇(𝐸) = 𝜇̃(⋅, 𝑤(𝐸), 𝐸). Thus

𝜇(𝐸1) − 𝜇(𝐸2)‖𝐿1 ≤ ‖𝜇̃(⋅, 𝑤(𝐸1), 𝐸1) − 𝜇̃(⋅, 𝑤(𝐸1), 𝐸2)‖𝐿1

+ ‖𝜇̃(⋅, 𝑤(𝐸1), 𝐸2) − 𝜇̃(⋅, 𝑤(𝐸2), 𝐸2)‖𝐿1 (64)

First, by Lemma A.2 (2), and given that 𝐾2 is bounded, we have
3 > 0 (independent of (𝛼1, 𝛼2, 𝛼3)) such that

𝜇̃(⋅, 𝑤(𝐸1), 𝐸1) − 𝜇̃(⋅, 𝑤(𝐸1), 𝐸2)‖𝐿1 ≤ 𝐶3‖𝐸1 − 𝐸2‖𝐿2 . (65)

Second, given that 𝑤(𝐸1) and 𝑤(𝐸2) belong to a compact subset
1 (see Petit (2022), Lemma 8.2), and that for any 𝐸 ∈ 𝐾2 the map
0,+∞)𝑁 ∋ 𝑤 ↦ 𝜇̃(⋅, 𝑤, 𝐸) ∈ 𝐿1(𝛺) is 𝐶1, it is therefore Lipschitz on 𝐾1
nd we have 𝐶4 > 0 (independent of (𝛼1, 𝛼2, 𝛼3)) such that

𝜇̃(⋅, 𝑤(𝐸1), 𝐸2) − 𝜇̃(⋅, 𝑤(𝐸2), 𝐸2)‖𝐿1 ≤ 𝐶4‖𝑤(𝐸1) −𝑤(𝐸2)‖𝐿∞ .

Now, let us prove the following Lemma, which shows that the
quilibrium wage map is locally Lipschitz with respect to the pollution
istribution.

emma A.7. For any 𝐸 ∈ 𝐻1
0 (𝛺), let (𝑤(𝐸), 𝑄(𝐸), 𝜇(𝐸)) ∈ (0,+∞)𝑁 ×

(𝛺,R∗
+)×𝑐 (𝛺) be the unique solution of the system formed by Eqs. (32),

33) and (35). For all 𝜃 ∈ [0, 𝜃0], the mapping 𝑤 ∶ (𝐻1
0 (𝛺), ‖ ⋅ ‖𝐿2 ) →

(0,+∞)𝑁 , ‖ ⋅ ‖𝐿∞ ), 𝐸 ↦ 𝑤(𝐸) is locally Lipschitz, thus Lipschitz on the
ompact 𝐾2.

roof. For 𝐸 ∈ 𝐻1
0 (𝛺) and 𝑤 ∈ (0,+∞)𝑁 , let 𝑔(𝑤,𝐸) ∶= 𝛹 (𝑤,𝐸)−𝐿(𝑤),

where:

• 𝐿(𝑤) = (

𝐿𝑖(𝑤𝑖)
)

𝑖∈{1,…,𝑁}

• 𝛹 (𝑤,𝐸) = (

∫𝛺 𝐺𝜎,𝑖(𝑥,𝑤)𝜇̃(𝑥,𝑤,𝐸)𝑑𝑥
)

𝑖∈{1,…,𝑁}

• 𝜇̃(𝑥,𝑤,𝐸) = 𝑅𝜎 (𝑥,𝑤)
𝜃

1−𝜃 𝐸̃(𝑥)−
𝛾

1−𝜃

∫𝛺 𝑅𝜎 (𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝑑𝑦
, ∀𝑥 ∈ 𝛺

First, for any 𝐸 ∈ 𝐻1
0 (𝛺), 𝑔(𝑤(𝐸), 𝐸) = 0. Besides, the map 𝑔 is of

lass 𝐶1 on (0,+∞)𝑁 × 𝐻1
0 (𝛺). We have, for any (𝑤,𝐸) ∈ (0,+∞)𝑁 ×

1
0 (𝛺):

• 𝐷𝑤𝛹 (𝑤,𝐸)(𝑣) = ∫𝛺 𝐷𝑤𝐺(𝑥,𝑤) ⋅ 𝑣 𝜇̃(𝑥,𝑤,𝐸)𝑑𝑥, ∀𝑣 ∈ (0,+∞)𝑁

• 𝐷𝐸𝛹 (𝑤,𝐸)(ℎ) = ∫𝛺 𝐺(𝑥,𝑤)
𝜇̃(𝑥,𝑤,𝐸)
𝐸(𝑥) ℎ(𝑥)𝑑𝑥, ∀ℎ ∈ 𝐻1

0 (𝛺)

Following Petit (2022), Theorem 8.3, for all 𝜃 ∈ [0, 𝜃0], the matrix
𝑤𝐺(𝑥,𝑤) is invertible. Thus, by the implicit function theorem, for
ny 𝐸 ∈ 𝐻1

0 (𝛺), there exists 𝜙𝐸 ∈ 𝐶1(𝐻1
0 (𝛺), (0,+∞)𝑁 ),  ×  an

pen neighbourhood of (𝑤(𝐸), 𝐸) such that, for all (𝑣, ℎ) ∈  ×  with
(𝑣, ℎ) = 0, we have 𝑣 = 𝜙(ℎ).

This implies that the map 𝑤 ∶ 𝐻1
0 (𝛺) ∋ 𝐸 ↦ 𝑤(𝐸) ∈ (0,+∞)𝑁 is

ocally Lipschitz, thus globally Lipschitz on the compact 𝐾2. □

By Lemma A.7, the mapping 𝑤 ∶ (𝐾2, ‖ ⋅ ‖𝐿2 ) → ((0,+∞)𝑁 , ‖ ⋅

𝐿∞ ), 𝐸 ↦ 𝑤(𝐸) is Lipschitz, thus we have 𝐶5 > 0 and 𝐶6 > 0
independent of (𝛼1, 𝛼2, 𝛼3)) such that

𝑤(𝐸1) −𝑤(𝐸2)‖𝐿∞ ≤ 𝐶5‖𝐸1 − 𝐸2‖𝐿2 (66)

nd

𝜇̃(⋅, 𝑤(𝐸1), 𝐸2) − 𝜇̃(⋅, 𝑤(𝐸2), 𝐸2)‖𝐿1 ≤ 𝐶6‖𝐸1 − 𝐸2‖𝐿2 . (67)

Similarly, there exists 𝐶7 > 0, independent of (𝛼1, 𝛼2, 𝛼3), such that

‖𝑓𝑤(𝐸2),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸2)‖𝐿∞ ≤ 𝛼𝐶8‖𝜇(𝐸1) − 𝜇(𝐸2)‖𝐿1 . (68)

Combining inequalities (62), (63), (64), (65), (66), (67) and (68)
yields the existence of 𝐶8 > 0, independent of (𝛼1, 𝛼2, 𝛼3), such that

‖𝑓𝑤(𝐸1),𝜇(𝐸1) − 𝑓𝑤(𝐸2),𝜇(𝐸2)‖𝐿∞ ≤ 𝛼𝐶8‖𝐸1 − 𝐸2‖𝐿2 .

s a consequence, if 𝛼 is small enough, then  is a contraction by
inequality (61). Therefore Eq. (60) has a unique fixed-point. Thus, by
Lemma A.6, there is a unique equilibrium.
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Proof of Proposition 5.2

The proof is an adaptation of the proof of Achdou et al. (2023),
Proposition 3.4. For every 𝜎 ∈ (0, 1), there exists 𝑤𝜎 ∈ 𝐾1 and 𝐸𝜎 ∈ 𝐾2,
where 𝐾1 is a compact subset of (0,+∞)𝑁 and 𝐾2 a compact subset of
𝐿2(𝛺) (both being independent of 𝜎 ∈ (0, 1)), such that

∫𝛺
𝐺𝜎,𝑖(𝑥,𝑤𝜎 )𝑑𝜇𝜎 (𝑥) = 𝐿𝑖(𝑤𝜎,𝑖 ), ∀𝑖 ∈ {1,… , 𝑁}

𝛥𝐸𝜎 (𝑧) + 𝐕(𝑧) ⋅ ∇𝐸𝜎 (𝑧) + 𝜆𝐸𝜎 (𝑧) = 𝑓𝐸𝜎 ,𝑤𝜎 (𝑧), ∀𝑧 ∈ 𝛺

𝐸𝜎 (𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

where

𝜇𝜎 (𝑥) =
𝑅𝜎 (𝑥,𝑤𝜎 )

𝜃
1−𝜃 𝐸̃𝜎 (𝑥)

− 𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅𝜎 (𝑦,𝑤𝜎 )
𝜃

1−𝜃 𝐸̃𝜎(𝑦)
− 𝛾

1−𝜃 𝜓(𝑦) 𝑑𝑦
, ∀𝑥 ∈ 𝛺.

Up to a subsequence, we may assume that (𝑤𝜎 , 𝐸𝜎 ) converges to
some (𝑤,𝐸) ∈ 𝐾1 × 𝐾2 as 𝜎 goes to 0. By the proof of Proposition 5.1,

solves

𝛥𝐸(𝑧) + 𝐕(𝑧) ⋅ ∇𝐸(𝑧) + 𝜆𝐸(𝑧) = 𝑓𝐸,𝑤(𝑧), ∀𝑧 ∈ 𝛺

𝐸(𝑠) = 0, ∀𝑠 ∈ 𝜕𝛺

and 𝜇𝜎 converges to 𝜇 ∈ 𝑐 (𝛺) in 𝐿1(𝛺), where

𝜇(𝑥) =
𝑅(𝑥,𝑤)

𝜃
1−𝜃 𝐸̃(𝑥)−

𝛾
1−𝜃 𝜓(𝑥)

∫𝛺 𝑅(𝑦,𝑤)
𝜃

1−𝜃 𝐸̃(𝑦)−
𝛾

1−𝜃 𝜓(𝑦) 𝑑𝑦
, ∀𝑥 ∈ 𝛺.

Thus, 𝐸 satisfies (34). By using exactly the same arguments as
n Achdou et al. (2023), proof of Proposition 3.4, we can show that
𝑤, 𝜇) satisfies (36) and (37). Finally, letting 𝑄 ∶= (1 − 𝜃)𝑅(⋅, 𝑤)𝜇, we
ave that 𝑄 solves (33).

Therefore, the quadruplet (𝑤,𝑄,𝐸, 𝜇) satisfies conditions (33), (34),
35), (36) and (37), completed with 𝐸 = 0 on 𝜕𝛺. This proves the
xistence of equilibria without idiosyncratic shocks.

roof of Proposition 6.1

Condition (19) is equivalent to the mean-field equation

𝛺
U(𝑥, 𝜇(𝑥))𝑑𝜇(𝑥) = sup

𝑚∈𝑐 (𝛺)∫𝛺
U(𝑥, 𝜇(𝑥))𝑑𝑚(𝑥),

where for every 𝑥 ∈ 𝛺,

U(𝑥, 𝜇) =

{

𝜃𝜃 𝑅𝜎 (𝑥,𝑤)
𝜃 𝐸̃(𝑥)−𝛾

𝜇(𝑥)1−𝜃 , if 𝜇 ∈ 𝑐 (𝛺),
−∞ otherwise,

with the convention 1∕0 = +∞. One can rewrite this equilibrium
ondition as follows:

𝑚 ∈ (𝛺), ∫𝛺
U(𝑥, 𝜇)𝑑(𝑚 − 𝜇)(𝑥) ≤ 0.

We recognize the first order condition of the following maximization
problem:

sup
𝜇∈(𝛺)

∫𝛺
 (𝑥, 𝜇)𝑑𝑥, (69)

here  is the potential of the game. In this setting, U represents the
erivative (in the sense of measures) of  , defined by

(𝑥, 𝜇) =

{

𝜃𝜃−1
(

𝑅𝜎 (𝑥,𝑤)𝜇(𝑥)
)𝜃 𝐸̃(𝑥)−𝛾 , if 𝜇 ∈ 𝑐 (𝛺),

−∞, otherwise.

Since the utility function is a power function of the density of workers’
residences, we observe that (69) is equivalent to

sup ∫ U(𝑥, 𝜇)𝑑𝜇(𝑥).
19

𝜇∈(𝛺) 𝛺
Proof of Proposition 6.2

Applying the weak formulation of pollution dispersion (15), with a
constant unit test function 𝑣 ∶= 1,8 we get

∫𝛺
(𝐕 ⋅ ∇𝐸) + 𝜆∫𝛺

𝐸 = ∫𝛺
𝑓𝜇,𝑤.

But

∫𝛺
(𝐕 ⋅ ∇𝐸) = −∫𝛺

𝐸(∇ ⋅ 𝐕) + ∫𝜕𝛺
𝐸(𝑠)𝐕(𝑠) ⋅ 𝐧 𝑑𝑠 = 0

y the divergence theorem and equations satisfied by 𝐸 and 𝐕: in
articular, ∇ ⋅ 𝑉 = 0 and 𝐸 = 0 on 𝜕𝛺. Therefore

𝛺
𝐸 = 𝜆−1 ∫𝛺

𝑓𝜇,𝑤 = 𝜆−1 ∫𝛺2 |𝑥 − 𝑦|𝜇(𝑥)𝐺𝜎 (𝑥, 𝑦,𝑤) 𝑑𝑥 𝑑𝑦

r, given that 𝑚(𝑥, 𝑦) ∶= 𝜇(𝑥)𝐺𝜎 (𝑥, 𝑦,𝑤) is a probability density on 𝛺2,

𝛺
𝐸 = 𝜆−1E [|𝑋 − 𝑌 |]

here the couple (𝑋, 𝑌 ) follows the joint distribution of density 𝑚(𝑥, 𝑦).

roof of Proposition 6.3

By Eq. (18), using 𝜇 as test function9 we have

∫𝛺
𝐸𝜇 = ∫𝛺

(

−∇𝐸 ⋅ ∇𝜇 + 𝑓𝜇,𝑤𝜇 − 𝐕 ⋅ ∇𝐸𝜇
)

ith

𝜇 = 𝜃
1 − 𝜃

∇𝑅𝜎 (⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

𝜇 −
𝛾

1 − 𝜃
∇𝐸
𝐸̃

𝜇. (70)

Now, using the divergence theorem, boundary conditions on 𝐸, and
incompressibility condition on 𝐕, we obtain

−∫𝛺
𝐕 ⋅ ∇𝐸 𝜇 = ∫𝛺

𝐸 [∇ ⋅ (𝐕𝜇)] = ∫𝛺
𝐸 ∇𝜇 ⋅ 𝐕

hus

∫𝛺
𝐕 ⋅ ∇𝐸 𝜇 = 𝜃

1 − 𝜃 ∫𝛺

([

𝐕 ⋅
∇𝑅𝜎 (⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

]

𝐸 𝜇
)

−
𝛾

1 − 𝜃 ∫𝛺
𝐕 ⋅

∇𝐸
𝐸̃
𝐸 𝜇

= 𝜃
1 − 𝜃 ∫𝛺

([

𝐕 ⋅
∇𝑅𝜎 (⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

]

𝐸 𝜇
)

−
𝛾

1 − 𝜃 ∫𝛺
𝐕 ⋅ ∇𝐸 𝜇 +

𝛾
1 − 𝜃 ∫𝛺

𝐕 ⋅
∇𝐸
𝐸̃
𝐸0 𝜇

hich yields

∫𝛺
𝐕⋅∇𝐸 𝜇 = 𝜃

1 − 𝜃 − 𝛾 ∫𝛺

(

𝐕 ⋅
∇𝑅𝜎(⋅, 𝑤)
𝑅𝜎(⋅, 𝑤)

)

𝐸 𝜇+
𝛾

1 − 𝜃 − 𝛾 ∫𝛺
𝐕⋅∇𝐸

𝐸̃
𝜇

because 𝐸0 = 1. Now, by using the divergence theorem and formula
(70), we obtain

∫𝛺
𝐕 ⋅

∇𝐸
𝐸̃

𝜇 = ∫𝛺
𝐕 ⋅ ∇(ln(𝐸̃))𝜇

= −∫𝛺
(𝐕 ⋅ ∇𝜇) ln(𝐸̃) + ∫𝜕𝛺

ln(𝐸0)𝐕𝜇

= − 𝜃
1 − 𝜃 ∫𝛺

([

𝐕 ⋅
∇𝑅𝜎 (⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

]

ln(𝐸̃)𝜇
)

+
𝛾

1 − 𝜃 ∫𝛺
𝐕 ⋅ ∇(ln(𝐸̃)) ln(𝐸̃)𝜇

= − 𝜃
1 − 𝜃 ∫𝛺

([

𝐕 ⋅
∇𝑅𝜎 (⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

]

ln(𝐸̃)𝜇
)

8 Note that we cannot formally use this test function since it is not equal to
ero on 𝜕𝛺. However, it is possible to consider a sequence of 𝐻1

0 (𝛺) converging
to 𝑣, and apply the Lebesgue dominated convergence theorem to get the
following equation.

9 Same comment as the previous one.
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w

R

A

A

A

A

A

A

A

B

B

B

+
𝛾

1 − 𝜃 ∫𝛺
𝐕 ⋅

∇𝐸
𝐸̃

ln(𝐸̃)𝜇

We can iterate this calculation by integrating the second integral by
parts, and show by mathematical induction that at the equilibrium

∫𝛺
𝐕 ⋅

∇𝐸
𝐸̃

𝜇 = −
+∞
∑

𝑛=1

𝜃
1 − 𝜃

( 𝛾
1 − 𝜃

)𝑛

∫𝛺

(

𝐕 ⋅
∇𝑅𝜎 (⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

)

ln(𝐸̃)𝑛

𝑛!
𝜇

Hence, by dominated convergence

∫𝛺
𝐕 ⋅

∇𝐸
𝐸̃

𝜇 = − 𝜃
1 − 𝜃 ∫𝛺

(

𝐕 ⋅
∇𝑅𝜎(⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

) +∞
∑

𝑛=1

( 𝛾
1 − 𝜃

)𝑛 ln(𝐸̃)𝑛

𝑛!
𝜇

= − 𝜃
1 − 𝜃 ∫𝛺

(

𝐕 ⋅
∇𝑅𝜎(⋅, 𝑤)
𝑅𝜎 (⋅, 𝑤)

)

(

𝐸̃
𝛾

1−𝜃 − 1
)

𝜇

hich gives the desired result.
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